Weeding out the WIMPs

Liquid Xenon TPCs and the Direct Detection of Dark Matter

Daniel Coderre Albert Einstein Center for Fundamental Physics, University of Bern June 2015, Krakow

 $\boldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Q: How do we know dark matter is a thing?

A: Astronomy and Cosmology

Galaxies rotate... but not like we would expect

- We can predict the mass of a galaxy by measuring the light it emits
- We can **measure** how fast a galaxy rotates via doppler shift
- We see a large discrepancy!
- About ²/₃ of the mass of the galaxy is not visible!
- Adding a dark matter halo allows us to describe the measurements
 - (ρ∝1/r²)

DISTRIBUTION OF DARK MATTER IN NGC 3198

Gravitational lensing measurements

- Movements of clusters of galaxies indicate various amounts of dark matter in different galaxies
- Bullet cluster → a collision of two galaxy clusters shows a clear separation of the hot gas (pink, x-rays measured) and dark matter (purple, measured via lensing)

Cosmic microwave background

- Quantify anisotropy of CMB measurements
- Large amounts of dark matter required to reproduce observed distribution
- Newest Plank measurement: 26.8% of the universe is dark matter

arXiv:1502.01582 [astro-ph.CO]

There are many theoretical dark matter candidates, but we will focus here on WIMPs

"WIMP miracle"

Assuming thermal production, the observed dark matter density is roughly reproduced by assuming a ~100 GeV particle with weak-scale interactions

Properties of our WIMP

- Mass in 10-1000 GeV range
- Weak-scale interaction cross section with matter
- Exist in our solar system with a flux of about ~ 10⁷/m, GeV/cm⁻²

Requirement: WIMPs must interact with matter! Otherwise it's hopeless anyway.

Indirect detection

Assumption

WIMPs can interact and produce SM particles

Where to look

Space! From ground or satellite-based observatories

Phys. Rev. Lett. 113, 251301

Dark Matter Production

Assumption

SM particles can interact and produce WIMPs

Where to look Accelerators.

Direct Detection

Assumption

The earth is floating through a cloud of WIMPs

Where to look

Earth based detectors. Carefully designed and shielded to remove as much background as possible.

Examples:

See next slide, there are many!

Direct Detection

Various measurement methods boil down to the same idea:

- Build an ultra-sensitive detector
- Put it in a low background environment
- Perform a long exposure and count any unexpected events
 - Our events:

Direct Detection

Various measurement methods boil down to the same idea:

- Build an ultra-sensitive detector
- Put it in a low background environment
- Perform a long exposure and count any unexpected events
 - Our events:

Liquid xenon TPCs

Examples: NOT to scale (but very roughly)!

Lots of competitors, but all have the same basic design...

Liquid xenon TPCs

Time (samples)

Energy

Determined by amplitude of charge and light signal

Collision type

Determined by proportion of charge and light signal (next slide)

Position

x,y determined by localization of ionization signal on top array

z determined by time difference between S1 and S2

ER/NR Discrimination

Ratio of scintillation and ionization signals

- In both cases remaining backgrounds after analysis comes from electric recoils
- No significant nuclear recoil backgrounds remain, thus null results

Background Reduction - Muons

Background Reduction - Materials/Environment

Material Screening

- All materials are screened for radioactivity using HPGe detectors and mass spectrometry
- Only the cleanest materials are chosen, material budgets are minimized

Fiducial volume

- Xenon is an excellent shield
- Outer layers of xenon block external radiation from the physical materials and environment
- Inner volume of xenon chosen for analysis, optimized with calibration data

Background Reduction - ⁸⁵Kr, ²¹⁹Rn, ²²⁰Rn, ²²²Rn

- ⁸⁵Kr artificially produced (bomb tests, power plants), found in air
 ⁸⁵Kr/Kr ~ 10⁻¹¹
- Commercial xenon contains krypton at ppm or ppb level
- Rn present in all of our materials
 - \circ $\,$ Kept low by screening
 - Will require constant distillation for future experiments

- Cryogenic distillation to take advantage of different boiling points of Xe and Kr
 - Done at XENON1T and XMASS
- ⁸⁵Kr levels down to ppq level have been attained for XENON1T S.Lindemann, H.Simgen, Eur.Phys.J.C (2014) 2746.
 - About 2 orders of magnitude improvement to previous experiments

Direct Detection Timeline

XENON10 Time: Until 2007 xenon: 14kg Fiducial: 5.4kg **Limit:** ~10⁻⁴³

XENON100 Time: Since 2008 xenon: 161kg Fiducial: 48kg Limit: ~10⁻⁴⁵

LUX Time: Since 2013 xenon: 370kg Fiducial: 118kg **Limit:** ~10⁻⁴⁶

PandaX Time: Since xenon: 120kg Fiducial: 37kg Limit: ~10⁻⁴⁴

XENON1T - 3t Pandax - >1t XENONnT - 7t LZ - 7t DARWIN - ~30t 19 ...

4

State of the Art

State of the Art

Annual Modulations

2-6 keV

Most significant claim \rightarrow DAMA

- The solar system is moving through the dark matter cloud surrounding the galaxy ("WIMP wind")
- Depending on the time of year the earth is moving more or less into the wind
- We then expect an enhancement in summer and a lower rate in winter
- DAMA has measured this to high significance

- CDMS-Si 3 events in signal region for silicon detectors only.
 - Excluded by Ge data from CDMS, but Si signal remains
- COGENT 1.9-sigma excess in low-mass spectrum and 2.2-sigma modulation signal
 - High backgrounds, various interpretations exclude dark matter entirely
- CRESST ~25 event excess EUR PHYS J C Volume 72, Number 4 (2012)
 - Ruled out by new measurements by the CRESST collaboration with updated detector technology EUR PHYS J C Volume 74, Number 12 (2014) ,astro-ph/1407.3146

- CDMS-Si 3 events in signal region for silicon detectors only.
 - Excluded by Ge data from CDMS, but Si signal remains
- COGENT 1.9-sigma excess in low-mass spectrum and 2.2-sigma modulation signal
 - High backgrounds, various interpretations exclude dark matter entirely
- CRESST ~25 event excess EUR PHYS J C Volume 72, Number 4 (2012)
 - Ruled out by new measurements by the CRESST collaboration with updated detector technology EUR PHYS J C Volume 74, Number 12 (2014) ,astro-ph/1407.3146 2013 - Si detectors
 2014 - Si + Ge detectors

- CDMS-Si 3 events in signal region for silicon detectors only.
 - Excluded by Ge data from CDMS, but Si signal remains
- COGENT 1.9-sigma excess in low-mass spectrum and 2.2-sigma modulation signal
 - High backgrounds, various interpretations exclude dark matter entirely
- CRESST ~25 event excess EUR PHYS J C Volume 72. Number 4 (2012)

25

- CDMS-Si 3 events in signal region for silicon detectors only.
 - Excluded by Ge data from CDMS, but Si signal remains
- COGENT 1.9-sigma excess in low-mass spectrum and 2.2-sigma modulation signal
 - High backgrounds, various interpretations exclude dark matter entirely
- CRESST ~25 event excess EUR PHYS J C Volume 72, Number 4 (2012)
 - Ruled out by new measurements by the CRESST collaboration with updated detector technology EUR PHYS J C Volume 74, Number 12 (2014) ,astro-ph/1407.3146

2014

EUR PHYS J C Volume 74, Number 12 (2014)

State of the Art

Where to go from here?

- Short term \rightarrow XENON1T experiment
 - Starting in a few months
- Longer term
 - XENONnT (LNGS)
 - 7 tons target volume
 - Direct update to XENON1T using same facility
 - LUX-ZEPLIN (SURF, USA)
 - Staged approach, 7 ton target volume
 - Target data-taking starting 2018
 - DARWIN
 - Next evolution from XENONnT (probable location LNGS)
 The LZ Dark Matter Experiment
 - 30 ton target volume
 - Time frame ~2020s

Outlook

- Liquid xenon TPCs are a competitive tool in the search for dark matter
- Data from multiple LXe TPCs excludes recently reported low-mass WIMP signals by several orders of magnitude
- Ton-scale LXe TPCs begin operation this year with XENON1T and continue in the next several years with XENONnT, LZ, and DARWIN

Advertisement - η decays with WASA-at-COSY

- We measure the branching ratios of four charged η decays
- Data is from 12 weeks running in pd \rightarrow ³He η
- A total of 3x10⁷ η mesons exist in the dataset

Neutral r	nodes				
Γ_1	$\eta ightarrow$ neutral modes	$(7.212 \pm .034) imes 10^{-1}$	S=1.2		
Γ_2	$\eta ightarrow$ 2 γ	$(3.941 \pm .020) imes 10^{-1}$	S=1.1	274	
Γ_3	$\eta ightarrow$ З π^0	${(3.268 \pm .023)} \atop imes 10^{-1}$	S=1.1	179	
Γ_4	$\eta ightarrow \pi^0$ 2 γ	(2.7 ± 0.5) $ imes 10^{-4}$	S=1.1	257	
Γ_5	$\eta ightarrow$ 2 π^0 2 γ	<1.2E-3	CL=90%	238	
Γ_6	$\eta ightarrow$ 4 γ	<2.8E-4	CL=90%	274	
Γ_7	$\eta ightarrow$ invisible	<1.0E-4	CL=90%		
▼ Charged modes					
Γ_8	$\eta ightarrow$ charged modes	$(2.810 \pm .034) \times 10^{-1}$			
Γ_9	$\eta ightarrow \pi^+\pi^-\pi^0$	$(2.292 \pm .028) imes 10^{-1}$	S=1.2	174	
K 10	$\eta ightarrow \pi^+\pi^-\gamma$	$^{(4.22\ \pm 0.08)}_{ imes 10^{-2}}$	S=1.1	236	
11	$\eta ightarrow e^+ e^- \gamma$	(6.9 ± 0.4) $ imes 10^{-3}$	S=1.3	274	
Γ_{12}	$\eta ightarrow \mu^+ \mu^- \gamma$	(3.1 ± 0.4) $ imes 10^{-4}$	S=1.0	253	
Γ_{13}	$\eta ightarrow e^+ e^-$	<5.6E-6	CL=90%	274	
Γ_{14}	$\eta ightarrow \mu^+ \mu^-$	(5.8 ± 0.8) $ imes 10^{-6}$		253	
Γ_{15}	$\eta ightarrow$ 2 e^+ 2 e^-	$^{(2.40\ \pm 0.22)}_{ imes 10^{-5}}$		274	
Γ_{16}	$\eta ightarrow \pi^+\pi^- e^+ e^- \ (\gamma)$	$^{(2.68\ \pm 0.11)}_{ imes 10^{-4}}$		235	
Γ_{17}	$\eta ightarrow e^+ e^- \mu^+ \mu^-$	<1.6E-4	CL=90%	253	
Γ_{18}	$\eta ightarrow$ 2 μ^+ 2 μ^-	<3.6E-4	CL=90%	161	
Γ_{19}	$\eta ightarrow \mu^+ \mu^- \pi^+ \pi^-$	<3.6E-4	CL=90%	113	
Γ_{20}	$\eta ightarrow \pi^+ e^- \overline{ u}_e$ + c.c.	<1.7E-4	CL=90%	256	
Γ_{21}	$\eta ightarrow \pi^+\pi^-$ 2 γ	<2.1E-3		236	
Γ_{22}	$\eta ightarrow \pi^+\pi^-\pi^0\gamma$	<5E-4	CL=90%	174	
Γ_{23}	$\eta o \pi^0 \mu^+ \mu^- \gamma$	<3E-6	CL=90%	210	

Advertisement - η decays with WASA-at-COSY

Advertisement - η decays with WASA-at-COSY

- Branching ratios in agreement with PDG
- Slight discrepancy in η→π⁺π⁻γ compared to KLOE result
- A larger dataset exists in protonproton reactions and is under analysis
- Keep an eye out for the protondeuteron paper in the coming month

Channel	Statistics Collected (signal)
η → e⁺e⁻γ	(14,040 ± 120)
$\eta \to e^+ e^- e^+ e^-$	(18.4 ± 4.9)
$\eta \rightarrow \pi^+ \pi^- \gamma$	(139, 760 ± 430)
$\eta \rightarrow \pi^+ \pi^- e^+ e^-$	(251 ± 17)

Advertisement - η decays with WASA-at-COSY

- Branching ratios in agreement with PDG
- Slight discrepancy in η→π⁺π⁻γ compared to KLOE result
- A larger dataset exists in protonproton reactions and is under analysis
- Keep an eye out for the protondeuteron paper in the coming month

Channel	Statistics Collected (signal)	
$\eta \to e^+ e^- \gamma$	(14,040 ± 120)	
$\eta \rightarrow e^+ e^- e^+ e^-$	(18.4 ± 4.9)	
$\eta \to \pi^+ \pi^- \gamma$	(139, 760 ± 430)	
$\eta \rightarrow \pi^+ \pi^- e^+ e^-$	(251 ± 17)	

