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Introduction

It is a common knowledge that the capture
cross section of nuclei such as *>/Gd is very
large, 225,000.00 barns

Other nuclei have much smaller cross
sections.

The reaction,

n+1B-> 1B -2 7/Li+



* has a cross section of 4,000.00 barns (very
large and used in BNCT).

e The cross section on radioactive nuclei such as
135Xe = 2.0 x 10° barns!

 Doorway resonance could be cause of such
large values.



Resonance cross section

0. =4 x 10°[barns]I" T, [(E — Eg)* +(I'/2)°]*

For 1°/Gd target, the thermal neutron width is of
the order of I'_ = 10“D[E(eV)]*?= 0.1meV
(taking D to be 42.6 eV for 1°3Gd at E* = 6-8

MeV) and that of I, =0.15 eV, and taking the
compound resonance energy to be at about

the neutron energy of 0.025 eV, the capture
cross section acquires the value,

o.=1.78 x 10*[barns]



* On the other hand if the CN resonance is at,
say, 22 eV, which corresponds to D/2 then,

* 0.=2.0[barns] !

* A great order of magnitude difference!!



Fluctuations
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2p-1h Doorways and their role

 We basically get the “background” cross
sections in the barns — 100’s barns range of
values.

* The very large capture cross sections seem to
require something else. Possible 2p-1h
doorway resonances.

* Such doorways were used in the past in parity
violation studies with epithermal neutrons.



* The issue here is to find a physical situation

where the neutron width is enhanced by
order of magnitudes.

e 2p-1h doorway resonance to which the

neutron is exclusively coupled as it is captured
by the target. Thus



o, =4 x 10°[barns]I", I, H[(E — Ep)* +(I'p/2)%]

e I'=I," +I';', where I';! is the doorway
neutron escape width which comes out to be
about 0.18keV and I';! is the doorway
damping width which can be calculated using
the 2p-1h density of states. The gives I',' =
1.0 keV. (Weused I',! /Dy =T, /D, )



The gamma decay is predominantly through
the compound nucleus. Accordingly we have
for the cross section,

0. = (1/m)* x 10°[barns]I'y Iy [(E - E,)? +
(I'p)*/4]7

with

[y, = | [y, [(Ep—E,q )2 + (Fq)2/4 ]2
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 The capture cross section becomes, after
taking E. = E, (the doorway resonance with a
damping width of I'; = 1.0 keV contains a I',/
D, = 1.0keV/42.6eV = 22 CN resonances)

* 0.~ (2/m)? x 108[barns]Ty , (Fpt)? [(Ep)? Ty 172

* or with E; =50 keV,



o. =~ (1/m)? x 10%[barns/(eV)]Iy |

which gives with I'y , =T';" =0.18 keV the
value,

o, = 1.0 x 10° [barns]

for the °’Gd nucleus, to be compared to the
empirical value of 2. 25 x 10° [barns].

It seems that a 2p-1h doorway could supply
the mechanism of vary enhanced thermal
cross section!



* How frequent this enhancement occurs? The
ratio of the cross sections to that without the
doorway is I'y /I'; . We calculated the
probability of such an enhancement to be
present in the sense that the width ratio
attains a certain value 1, and found it to be,

P(no )= (1/2m)[1 + no]_ly
e avery small number!!!



How Statistical is the cross section?

* The fluctuation seen in the capture cross
section vs. A could be indicative of a random
behavior which can be traced to the formation
of the nuclei.

The correlation function:
* Energy: C(g) = 1/[1 + (¢/T)?]
 Orif an external parameter is varied,
o X:C(X)=1/[1+ (X/Ty)%]°




Density of Maxima

* The average density of maxima is given by
* <n>=(1/2n)[C""(2) | .o/ (-C” (2) ] ,0) 1Y/

Brink and Stephen
Phys. Lett. 5, 77 (1963)



Density of Maxima

* (Get,

<n>=3Y2/ml

x [(9p2 -18p +10)/(5p? -10p+6)]/2

And,

<n,> = 3Y2/2%2m[

(7p? -10p +6)/(2p? -3p+2)]*/2

0 is the tunneling probability, related to I'/D.




* For our purpose of cross section fluctuation
with A we take the second choice, namely,

<n,>=3Y2/2%2nr ,

[(7p? -10p +6)/(2p? -3p+2)]Y/2

and consider the case of p << 1 (isolated CN
resonances (in energy). Get,
<n,>=3/2Y°nr , Thus

[, =3/(2Y?n<n,> )
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Numerical Simulations for open

guantum dots
Random Matrix Theory (RMT)

S(e)=1—-2riW'(e — H+inWW")™ W

3.04 —+*— RMT simulation
N=5
1 M=200

1.5




* We get 18 maxima in a range of A of 50. This
gives us,

[ ,= 1.8 in units of A

* This value represents the range over which
the chaotic system still maintains coherence



* AA=1or?2isthe number of neutrons
captured in the nucleosynthesis process to
form a certain element. We therefore attach
a new and potentially important characteristic
to the capture cross section vs. A, besides the
historical connection to the strength function!



Conclusions

Compound nucleus resonances can not
explain the very large values of the capture
cross section for a few nuclei.

2p-1h simple doorway resonances could
supply the mechanism of enhancement of the
Cross section.

The whole capture process vs. A is random.
Can supply information about nucleosynthesis



Thank you !






Landauer Formula

The above S-Matrix can be written as

t
N

where r is the reflection matrix and t is the
transmission matrix. The conductance is
calculated from the transmission matrix
through the Landauer formula

2e? , ;

T is the dimensionless conductance which
we analyse in the following.



The Correlation Functions

C(6¢) is expected to be a Lorentzian.
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FIG. 2: Normalized transmission autocorrelation function 65 (dg) =
Ce(dz)/var(T") as a function of the energy J=. Symbols correspond
to ensemble averages for different number of channels V.

The agreement with a Lorentzian function is excellent.



The Average Density of Maxima
for Energy Fluctuations
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FIG. 3: Density of maxima (p. )I" as a function of the number of open
channels N. The symbols with statistical error bars correspond to
our numerical simulations. The dashed line stands for the Gaussian
process prediction.

Expect to approach to 0.55



Correlation Function for Fluctuation
due to Variation of the Hamiltonian

C(6X) is expected to be a squared Lorentzian.
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FIG. 4 Normalized transmission autocorrelation function
Cx(0X) = Cx(6X)/var(T) as a function of the parameter
0X. Dots correspond to numerical simulations for different V.
Solid line is given by theory, Eq. (15). Insert: Fitted X. versus N1/2
showing a linear behavior, as indicated by the solid line.

The agreement with a squared Lorentzian function is excellent.



The Average Density of Maxima
for External Parameter Variation
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FIG. 5: Density of maxima (px ) as a function of the number of open
channels /N in units of X.. The symbols with statistical error bars
correspond to our numerical simulations. The dahed line stands for
the theoretical prediction

Expect to approach to 0.68



Correlations Functions in Open
Quantum Dots with Finite

Tunnel Barrier

* Introduce tunnel probability, I, for electrons
to enter the QD.
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FIG. 1. (Color online) Correlation function as a function of the
parametric variation of energy. Transition from Lorentzian (dashed
lines) to anticorrelation (solid line) as a function of symmetric I". The
inset diagram (8¢/y) x I' show values of the correlation function in
each color.



Correlations Functions in Open
Quantum Dots with Finite

Tunnel Barrier
* For 6¢=0, only magnetic field variation
CoX) 2I'l =T | 2+ T'Q3I'—4)
1/88 14X [1+(X)?)?
* For 6B=0, only electronic energy variation
C(de) 3r2-T)—2 41+ —2)]
1/88  1+@e?  [1+e)?)
=» Both cases show highly non-Lorentzian
shape.




Number of Maxima in Case with
Tunneling
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FIG. 3. (Color online) Typical dimensionless conductance g as a FIG. 4. (Color online) The top (bottom) diagram shows the
function of £/y. Solid lines show the numerical results for a single density of peaks (p:) ({px)) for parametric variation of the electron
realization of H, the dots indicate the maxima of g, and the dashed energy (perpendicular magnetic field). The darker and lighter regions
line is the e-independent conductance average. are explained in the strip on the right.

5Sr2—10r+6 2I'2 -3 +2
= Get excellent agreement with numerical
simulation “data”.
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