Theoretical and experimental approaches to the alpha clustering in nuclei

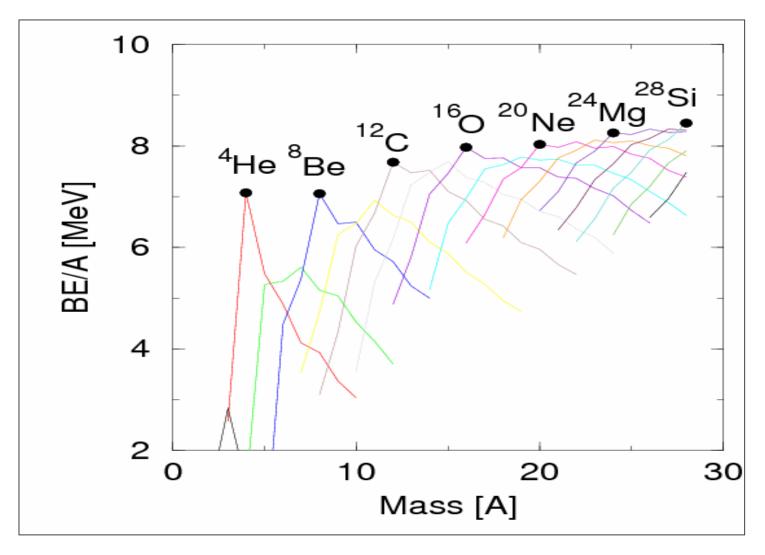
Jinesh Kallunkathariyil

Outline

- 1. Historical development
- 2. Model calculations and results
- 3. Systematic study
- 4. Conclusions

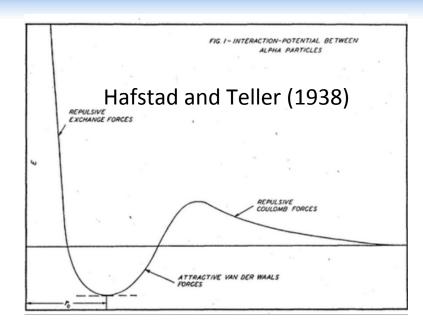
Experimental binding energy curve

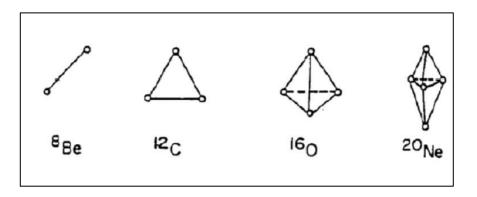
Same color, same Z

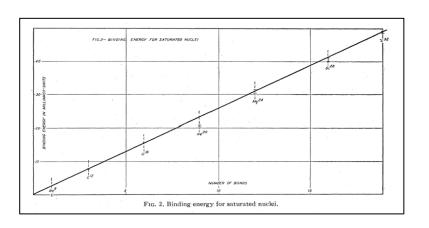


History

Molecular viewpoint of alpha clustered nuclei - Bethe and Bacher (1936)







Hafstad and Teller (1938)

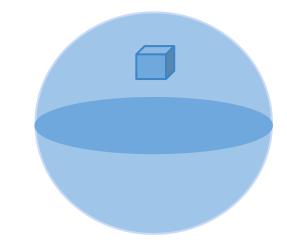
Equation of State (EOS) of nuclear matter

Nuclear matter

infinite nucleons of density $oldsymbol{
ho}(ec{r},t)$ temperature $T(ec{r},t)$

$$E_V = \int_V \rho e(\rho, T) dV$$
 $\frac{E}{A} = e(\rho, T)$

$$\frac{E}{A} = e(\rho, T)$$



Asymmetric nuclear matter at low temperature

$$e(\rho, \delta) = T_F(\rho, \delta) + V_0(\rho) + \delta^2 V_2(\rho)$$

Isospin dependent

$$e(\rho, \delta) = e(\rho, \delta = 0) + \delta^2 e_{sym}(\rho)$$

$$\xi = rac{
ho -
ho_0}{
ho_0}$$
 $\delta = rac{
ho_n -
ho_p}{
ho_0}$

$$egin{align} egin{align} eg$$

New form of EOS

$$egin{aligned} \eta_n &= rac{
ho_{n\uparrow} -
ho_{n\downarrow}}{
ho} \ & \ \eta_p &= rac{
ho_{p\uparrow} -
ho_{p\downarrow}}{
ho} \end{aligned}$$

Spin and Isospin dependent

$$egin{aligned} egin{aligned} egin{aligned} \eta_n &= rac{
ho_{n\uparrow} -
ho_{n\downarrow}}{
ho} \ \eta_p &= rac{
ho_{p\uparrow} -
ho_{p\downarrow}}{
ho} \end{aligned} egin{aligned} egin{aligned} e &= e_{00} + rac{K_0}{18} \xi^2 + \ \delta^2 \left(e_{I0} + rac{L_I}{3} \xi + rac{K_I}{18} \xi^2
ight) + \ \left(\eta_n^2 + \eta_p^2
ight) \left(e_{ii0} + rac{L_{ii}}{3} \xi + rac{K_{ii}}{18} \xi^2
ight) + \ 2 \eta_n \eta_p \left(e_{ij0} + rac{L_{ij}}{3} + rac{K_{ij}}{18} \xi^2
ight) \end{aligned}$$

Draw back:

Valid only near to the $\rho = \rho_0$ when density $\rho = 0$, $e \neq 0$

$$e(\rho,0) = \alpha_0 \rho + \beta_0 \rho^2 + \gamma_0 \rho^3$$

Model assumptions

$$\Phi = \prod_{k=1}^{A} {}^k \phi_{I_k S_k}$$

$${}^{k}\phi_{I_{k}S_{k}} = \frac{1}{\left(2\pi\sigma_{k}^{2}(r)\right)^{3/4}} \exp\left(\frac{-\left(\mathbf{r}_{k} - \langle\mathbf{r}_{k}\rangle\right)^{2}}{4\sigma_{k}^{2}(r)} + \frac{i}{\hbar}\mathbf{r}_{k}\langle\mathbf{p}_{k}\rangle\right)$$

 $\langle {f r}_k
angle, \, \langle {f p}_k
angle \,\, {
m and} \,\, \sigma_k^2(r)$ are time dependent parameters

Time evolution - self-consistent variational principle

Nuclear matter - four component fluid $\rho_{p\uparrow}$ $\rho_{p\downarrow}$ $\rho_{n\uparrow}$ $\rho_{n\downarrow}$, energy density $\varepsilon\left(\rho_{p\uparrow},\rho_{p\downarrow},\rho_{n\uparrow},\rho_{n\downarrow}\right)$

$$P_k(\mathbf{r}) = \left| {}^k \phi_{I_k S_k} \right|^2$$

$$e_{k} = \langle \varepsilon \rangle_{k} + \lambda \sigma_{k} (\varepsilon)$$

$$\langle \varepsilon \rangle_{k} = \int P_{k}(\mathbf{r}) \varepsilon (\rho_{p\uparrow}, \rho_{p\downarrow}, \rho_{n\uparrow}, \rho_{n\downarrow}) d^{3}\mathbf{r}$$

$$\sigma_{k}^{2} (\varepsilon) = \int P_{k}(\mathbf{r}) (\varepsilon (\rho_{p\uparrow}, \rho_{p\downarrow}, \rho_{n\uparrow}, \rho_{n\downarrow}) - \langle \varepsilon \rangle_{k})^{2} d^{3}\mathbf{r}$$

λ is a parameter associated with the surface energy

For nuclear matter $\sigma_k(\varepsilon)$'s zero

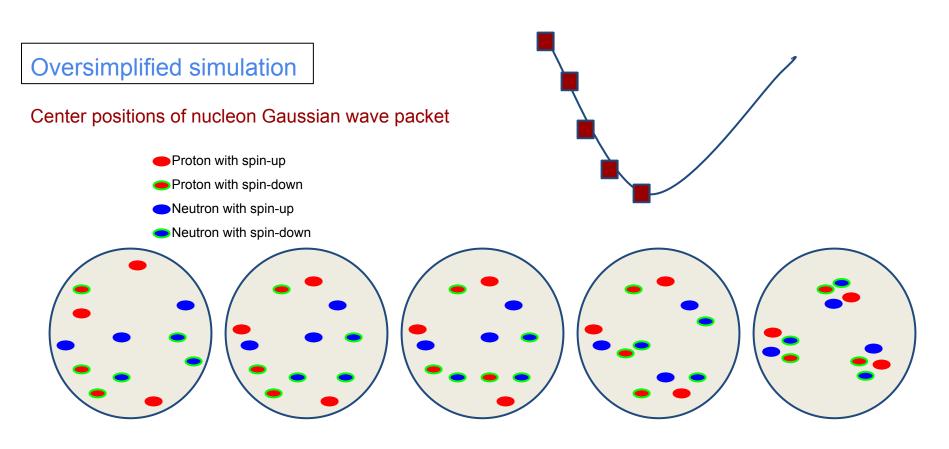
$$\varepsilon(\rho_{p\uparrow}, \rho_{p\downarrow}, \rho_{n\uparrow}, \rho_{n\downarrow})$$
 is EOS

Microscopic approach to Liquid Drop Model

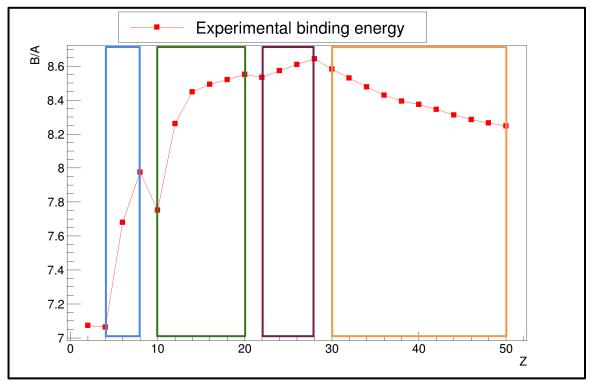
For finite nuclei

$$\langle \Phi | H | \Phi \rangle = \int \varepsilon \left(\rho_{p\uparrow}, \rho_{p\downarrow}, \rho_{n\uparrow}, \rho_{n\downarrow} \right) \rho \left(\mathbf{r} \right) d^3 \mathbf{r} + \lambda \sum_{k=1}^{k=A} \sigma_k(\varepsilon) + \langle \Phi | V_C | \Phi \rangle$$

EOS Parameters from BE and r.m.s radius of light nuclei



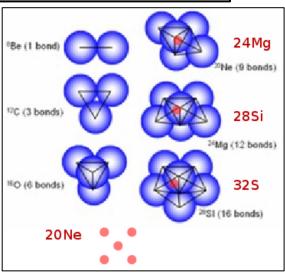
Assumptions in the calculation



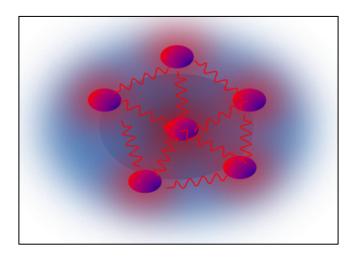
For Z≤8

 $8 < Z \le 20$ single alpha core

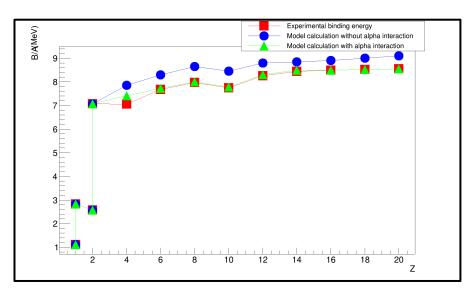
20 < Z ≤ 28 double alpha core

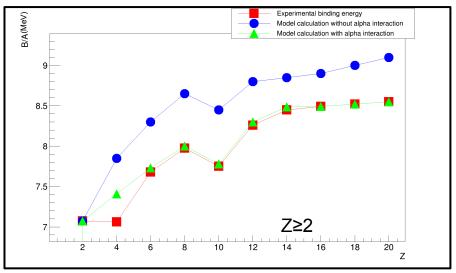


Matter without and with alpha cluster interaction

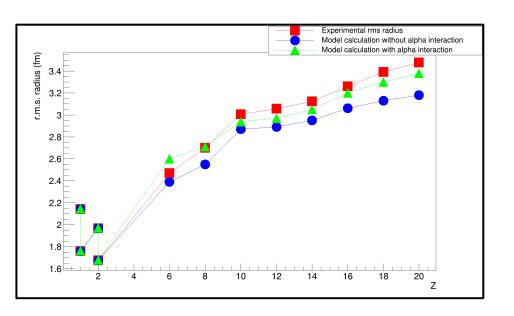


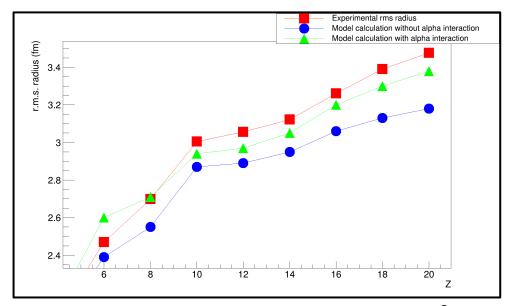
$$\langle \Phi | \Delta H_1 | \Phi \rangle = \sum_{i \neq j} P_{\alpha}(i) P_{\alpha}(j) V_{\alpha\alpha}(d_{ij})$$



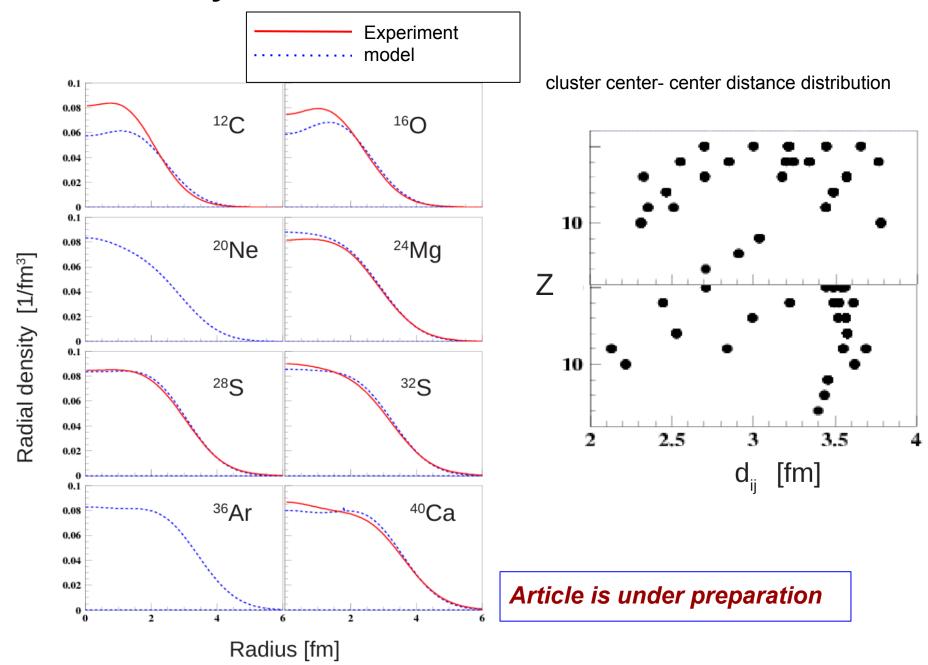


Matter without and with alpha cluster interaction

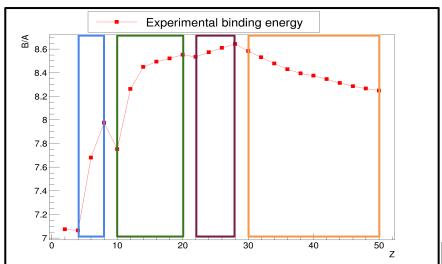


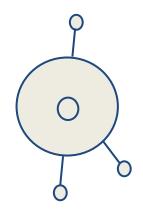


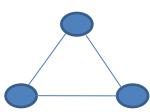
Radial density distribution

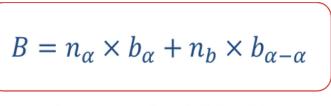


Systematic study

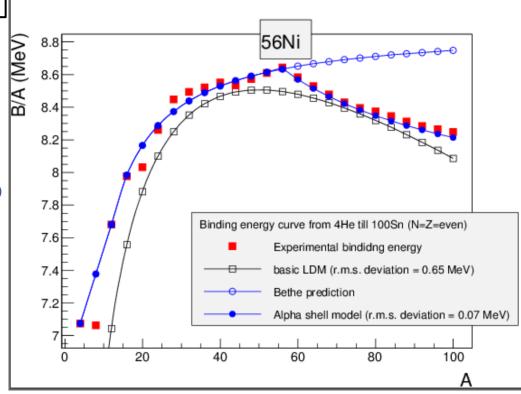








$$b_{\alpha-\alpha} = 2.425 MeV$$



Resulting structures

http://nz21-33.ifj.edu.pl/clusters/

Conclusions and perspectives

- Ground state structures are calculated
- Detector simulation and construction is finished. Undergoing tests

To be done

- Calculation of excited states and corresponding structure
- Comparison with experimental data
- Propose new experiments
- Analysis of results and comparison

Thank you...