





UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO



# Deuteron-Deuteron Collision at 160 MeV

<sub>by</sub> Ghanshyam Khatri

Institute of Physics, Jagiellonian University, Krakow



# Outline

- Introduction
- Experimental tools
- 4N System a step forward
- Data analysis for d+d @ 160 MeV
  - Raw-analysis & Event selection
  - Kinematics and BINA acceptance
- Results of QFS in *dd->dpn* : Comparison with first theories
- Summary

#### **Nuclear Force**

- ✓ **1935**: **Yukawa** presented a Theory
- ✓ **1947**: **Powell** proved the theory by experiments

> Today , many different Theoretical models are available to exactly describe the nuclear force between **any two nucleons**.

#### **Nuclear Force**

- ✓ 1935: Yukawa presented a Theory
- ✓ **1947**: **Powell** proved the theory by experiments

> Today , many different Theoretical models are available to exactly describe the nuclear force between **any two nucleons**.



#### even for the simplest Atomic Nucleus e.g. <sup>3</sup>H and <sup>3</sup>He

| Model   | [MeV]       |                        |
|---------|-------------|------------------------|
| Nijm I  | 7.72        | Binding                |
| Nijm II | 7.62        | Energy<br>of<br>Triton |
| AV18    | 7.62        |                        |
| Reid-93 | 7.63        |                        |
| Exp.    | <u>8.48</u> |                        |



High precision data from Los Alamos W. P. Abfalterer et al., PRL 81, 57 (1998)

# Adding Thee Nuclear Force (3NF) helps

- ✓ **1935**: **Yukawa** presented a Theory
- ✓ 1947: Powell proved the theory by experiments

> Today , many different Theoretical models are available to exactly describe the nuclear force between **any two nucleons**.



# **Experimental Tools**

Nucleon - Deuteron Scattering (Relatively Simplest but not simple):



➤Well-defined kinematic relations



➢rich phase-space: a large amount of kinematical configuration.

# deuteron-nucleon breakup

reaction is well suited to study 3N interactions



#### 4N System - a step forward



➤rich phase-space: a large amount of kinematical config.

# In the same manner, we investigate dd->dpn breakup

# BINA Detector Dedicated for few-body studies! High-precision data !







# 4N System – a step forward

### Theory:

- -> difficult (Technically & computationally)
- -> available (not exact) models fail
- -> ab-initio calculations for very low energies
- -> recent progress by A. Deltuva

# **Experiment:**

- Old data, at low energies
- Most of the data for dd elastic scattering
- Breakup data very scarse
  - (KVI dd breakup data at 130 MeV )

# 4N System – a step forward

## Theory:

- -> difficult (Technically & computationally)
- -> available (not exact) models fail
- -> ab-initio calculations for very low energies
- -> recent progress by A. Deltuva

# **Experiment:**

- Old data, at low energies
- Most of the data for dd elastic scattering
- Breakup data very scarse
  - (KVI dd breakup data at 130 MeV )



# 4N System – a step forward

# Theory:

- -> difficult (Technically & computationally)
- -> available (not exact) models fail
- -> ab-initio calculations for very low energies
- -> recent progress by A. Deltuva

# **Experiment:**

- Old data, at low energies
- Most of the data for dd elastic scattering
- Breakup data very scarse
  (KVI dd breakup data at 130 MeV )

# Situation of 4N-study today SIMILAR TO situation of 3N-study 2 decades ago

Experiment performed at KVI with BINA in April 2011. beam: deuteron, energy: 160 MeV, target: Liquid Deuterium



# **Event selection**



#### Steps:

Particle ID  $\rightarrow$  Calibration  $\rightarrow$  Channel discrimination

#### basic assumptions:

Coincidence of two charged particles Co-planarity, i.e.  $\Delta \varphi = \varphi_2 - \varphi_1 = \pm 180^\circ$  (for elastic scattering)





# <sup>2</sup>H(d,dp)n breakup reaction



#### Normalisation of dd elastic data



Ref: C. D. Bailey, IUCF, PhD Thesis, 2009

Invariant quantity **four-momentum transfer**,  $q = -t^2$ Where t=Mandelstam variable

Simplified for dd elastic scattering as:

$$t = 2p_{1cm}^2(\cos\theta_{c.m.} - 1)$$

One can extrapolate the 130 MeV and 180 MeV data to extract the 160 MeV.

Most reliable is to take a point at scaling region

RESULTS

#### CD Bonn + $\Delta$ (FIRST calculations by A. Deltuva)



 $T_{dpn} = 2(1-P_{34})U_1 = Breakup operator in dN single-scattering approx$ 

```
Breakup amplitude: <dpn|T<sub>dpn</sub>|dd><sub>symmetrized</sub>
```

11 Jun, 2015

#### RESULTS

scaled with arbitrary factor

just to compare shape with predictions

#### Un-normalized cross section distribution

#### Sample cross sections

 $\boldsymbol{\theta}_{d} = 26^{\circ}, \, \boldsymbol{\varphi}_{dp} = 180^{\circ}$ 

Neutron energy (when close to 0 i.e. spectator)





at Jagiellonian Symposium on Fundamental and Applied Subatomic Physics,

#### RESULTS

(calculations by A. Deltuva)

Only first term in **T**<sub>dpn</sub> (i.e. dp elastic scattering)

#### Un-normalized cross section distribution

#### Sample cross sections

# $\boldsymbol{\theta}_{d} = 26^{\circ}, \, \boldsymbol{\Phi}_{dp} = 180^{\circ}$

Neutron energy (when close to 0 i.e. spectator)





at Jagiellonian Symposium on Fundamental and Applied Subatomic Physics,

# Outlook

#### > Detail analysis of systematic effects

theoretical progress in 4N is urgently needed, the recent results are very promising

#### > 3N systems can be further studied with BINA@CCB

complementary studies of 4N systems, e.g. in p+3He->p+p+d reaction, are planned

# Summary

new set of very precise and numerous experimental data for *dd* breakup at 160 MeV :

normalized cross section for the breakup reaction following combinations of angles:

```
\theta_1, \theta_2 = 16^\circ - 28^\circ (in step of 2°), \phi_{12} = 180^\circ, 160^\circ, 140^\circ
```

(in total about 150 data points)



# Thank you for your attention !!!

#### **3NF helps but....**

-> some descrepancies (Ay puzzle, star-anomaly, problems with description of analyzing powers at medium energies)

-> a very subtle & hard to detect.

-> it's expected to be enhanced in 4N system.

3NF/2NF << 1

at Jagiellonian Symposium on Fundamental and Applied Subatomic Physics,