Present Status and Challenges of

Using Magnetic Moments to Unveil the Structure of the Atomic Nucleus

Diego A. Torres, Physics Department, Universidad Nacional de Colombia

Jagiellonian Symposium on Fundamental and Applied Subatomic Physics

Some History $\mu_n = \frac{e\hbar}{2m_p}$

In the beginning (1922) Stern-Gerlach performed their experiment.

- Spin quantization.
- Measurements of atomic magnetic moments.
- Measurements of magnetic moment of proton.

$$\mu_{\pi} = +2.792847350(9)\,\mu_n$$

The next day (1925) Goudsmit and Unlenbeck discovered the electron' spin.

The third day (30's) the neutron was discovered, its magnetic moment was measured, and the $\mu_{\nu} = -1.91304272(45) \mu_n$ magnetic moment of the deuteron was predicted ...

What is the magnetic moment in the nucleus

The nucleus is composed by moving protons and neutrons

Current densities create magnetic moments

Orbital

Classical Mechanics

$$\left|\vec{\mu}_l\right| = \frac{e}{2m} \left|\vec{l}\right|$$

Quantum Mechanics

$$\hat{\mu}_{l_z} = \frac{e\hbar}{2m}\hat{l}_z$$

Only protons have an orbital magnetic moment!

What is the magnetic moment in the nucleus

The nucleus is composed by moving protons and neutrons

Current densities create magnetic moments

What is the magnetic moment in the nucleus

The nucleus is composed by moving protons and neutrons

Current densities create magnetic moments

Classical Mechanics

$$\left|\vec{\mu}_{l}\right| = \frac{e}{2m} \left|\vec{l}\right|$$

Quantum Mechanics

$$\hat{\mu}_{l_z} = \frac{e\hbar}{2m}\hat{l}_z$$

Intrinsic

Only Quantum Mechanic Picture

$$\hat{\mu}_{\pi,\nu} = g_{\pi,\nu} \frac{e\hbar}{2m} s_{\pi,\mu}$$

$$\begin{split} \hat{I} = & \hat{l} + \hat{s} \\ \hat{I}_z = & \hat{l}_z + \hat{s}_z \end{split}$$

When $I=I_z$ the state is aligned.

Nuclear Magnetic

Moment

$$\hat{\mu}_{I_z} = \sum_{i=1}^{A} \hat{\mu}_{l_z} + \hat{\mu}_{s_z}$$

We measured $g = \frac{\mu/\mu_N}{I/\hbar}$

How do we measure a nuclear magnetic moment?

Magnetic Moments are measured by subjecting the excited nucleus to an external magnetic field and observing the Larmor precession of the nuclear spin.

 $\Delta \theta = -\frac{\mu_N}{\hbar} g |\vec{H}| \Delta t$

How do we measure a nuclear magnetic moment?

Magnetic Moments are measured by subjecting the excited nucleus to an external magnetic field and observing the Larmor precession of the nuclear spin.

$$-10^7 \text{ s/T}$$

$$-\frac{10^7 \text{ s/T}}{\hbar g |\vec{H}| \Delta t} \rightarrow -ps$$

$$-\frac{\mu_N}{\hbar g |\vec{H}| \Delta t} \rightarrow -ps$$

 $|\vec{H}| \sim 10^3 Tesla!$

Earth magnetic field ~ 3.6 x 10⁻⁵ Tesla. LHC superconducting magnet is ~ 8 Tesla. J-PARC ~ 2.5 Tesla (Tuesday by Megumi Naruki) KLOE array ~0.52 Tesla (Today by Elena Perez del Rio)

How do we obtain a magnetic field of 10³ Tesla?

The 4th day (1967) magnetic Transient Fields were discovered (by accident).

Volume 20, Number 9

PHYSICAL REVIEW LETTERS

26 February 1968

EVIDENCE FOR TRANSIENT HYPERFINE FIELDS ON FAST IONS IN FERROMAGNETIC MEDIA*

R. R. Borchers, † B. Herskind, ‡ and J. D. Bronson University of Wisconsin, Madison, Wisconsin

and

L. Grodzins, R. Kalish, and D. E. Murnick || Laboratory for Nuclear Science, Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 12 January 1968)

How do we obtain a magnetic field of 10³ Tesla?

The 4th day (1967) magnetic Transient Fields were discovered (by accident).

How do we obtain a magnetic field of 10³ Tesla?

The 4th day (1967) magnetic Transient Fields were discovered (by accident).

- The picture of the Magnetic Transient Field is not completed.
 Parametrization for H_{TF} are utilized.
- 3. The obtention of H_{TF} from first principles is worth to do.

How can we use this in a nuclear reaction?

Coulomb excitation reactions provide a nice way to obtain aligned states.

 ${}^{12}C({}^{96}Ru, {}^{12}C){}^{96}Ru^*$

Measurement using a quadrupole 2^+ to 0^+ transition

Measurement using a quadrupole 2^+ to 0^+ transition

Measurement using a quadrupole 2^+ to 0^+ transition

This is the so called Transient Field (TF) method to measure nuclear magnetic moments.

The Experimental Setup

In the 5th day measurements were performed.

The Experimental Setup

In the 5th day measurements were performed.

Results

In the 6th day data analysis started!

The regions around N=20, 28 and 50

- At magic numbers g factors are high.
- Negative values are originated by a pure shell model picture, ⁴⁰Ar, or by core excitations ⁴²Ca.
- Negative g factor values for 92,94 Zr are produced by neutron excitations in the $d_{5/2}$ shell.

Nuclear structure aspects via g-factor measurements: pushing the frontiers

OF SCIENC

PS

Diego A. Torres*, F. Ramirez Departamento de Física, Universidad Nacional de Colombia, Colombia E-mail: datorresg@unal.edu.co

The regions around 50<N<90

Diego A. Torres*, F. Ramirez Departamento de Física, Universidad Nacional de Colombia, Colombia E-mail: datorresg@unal.edu.co

The first frontier: $g(I>2^+)$

measurements: pushing the frontiers

Nuclear structure aspects via g-factor measurements: pushing the frontiers.

PoS Proceedings of Science, 10th Latin American Symposium on Nuclear Physics and Applications (2013) <u>http://pos.sissa.it/archive/conferences/194/021/X\%20LASNPA\021.pdf</u>

Diego A. Torres*, F. Ramirez Departamento de Física, Universidad Nacional de Colombia, Colombia E-mail: datorresg@unal.edu.co

The first frontier: $g(I>2^+)$

The first frontier: $g(I>2^+)$

Coulex Vs. Alpha Transfer

Coulomb Excitation

Alpha Transfer Reaction

Coulex Vs. Alpha Transfer

Coulomb Excitation ⁹⁶Ru

Alpha Transfer Reaction ¹⁰⁰Pd

Coulex Vs. Alpha Transfer

Coulomb Excitation ⁹⁶Ru

PHYSICAL REVIEW C 85, 017305 (2012)

Measurement of the ⁹⁶Ru $g(4_1^+)$ factor and its nuclear structure interpretation

D. A. Torres,^{*} G. J. Kumbartzki, Y. Y. Sharon, L. Zamick, B. Manning, and N. Benczer-Koller Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA

PHYSICAL REVIEW C 84, 044327 (2011)

First g-factor measurements of the 2_1^+ and the 4_1^+ states of radioactive ¹⁰⁰Pd

D. A. Torres,* G. J. Kumbartzki, Y. Y. Sharon, L. Zamick, B. Manning, and N. Benczer-Koller Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA

The negative $g(4^+)$ of ⁸⁶Sr

		$g(4_1^+)$	
	Exp.	JJ4B	JUN45
88 Zr	+0.65(18)	+0.84	+0.49
86 Sr	-0.68(49)	+0.22	-0.07

 $1p_{3/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2}$ for p and n.

PHYSICAL REVIEW C 85, 044322 (2012)

Structure of the Sr-Zr isotopes near and at the magic N = 50 shell from g-factor and lifetime measurements in ${}^{88}_{40}$ Zr and ${}^{84,86,88}_{38}$ Sr

G. J. Kumbartzki,¹ K.-H. Speidel,² N. Benczer-Koller,¹ D. A. Torres,^{1,*} Y. Y. Sharon,¹ L. Zamick,¹ S. J. Q. Robinson,³ P. Maier-Komor,⁴ T. Ahn,⁵ V. Anagnostatou,⁵ Ch. Bernards,^{5,†} M. Elvers,^{5,†} P. Goddard,⁵ A. Heinz,⁵ G. Ilie,⁵ D. Radeck,^{5,†} D. Savran,^{5,†} V. Werner,⁵ and E. Williams⁵

The negative $g(4^+)$ of ⁸⁶Sr

$${}^{86}_{38}$$
Sr + 2p = ${}^{88}_{40}$ Zr
2p in the $p_{1/2}$ shell

Some possible configurations to obtain a negative *g*-factor value

$$g(p_{1/2})_{\pi} = -0.529$$

 $g(g_{9/2})_{\nu} = -0.425$
 $g(p_{3/2})_{\nu} = -1.275$
 $g(f_{5/2})_{\nu} = +0.547$

 $g(g_{9/2})^2_{\nu}$ or $g(p_{3/2}, f_{5/2})_{\nu}$

		$g(4_1^+)$	
	Exp.	JJ4B	JUN45
88 Zr	+0.65(18)	+0.84	+0.49
86 Sr	-0.68(49)	+0.22	-0.07

 $1p_{3/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2}$ for p and n.

PHYSICAL REVIEW C 85, 044322 (2012)

Structure of the Sr-Zr isotopes near and at the magic N = 50 shell from g-factor and lifetime measurements in ${}^{88}_{40}$ Zr and ${}^{84,86,88}_{38}$ Sr

G. J. Kumbartzki,¹ K.-H. Speidel,² N. Benczer-Koller,¹ D. A. Torres,^{1,*} Y. Y. Sharon,¹ L. Zamick,¹ S. J. Q. Robinson,³ P. Maier-Komor,⁴ T. Ahn,⁵ V. Anagnostatou,⁵ Ch. Bernards,^{5,†} M. Elvers,^{5,†} P. Goddard,⁵ A. Heinz,⁵ G. Ilie,⁵ D. Radeck,^{5,†} D. Savran,^{5,†} V. Werner,⁵ and E. Williams⁵

The semi-magic core ⁸⁸SrVs. ⁹⁰Zr

 88 Sr and 90 Zr have been utilized as closed shell cores for large scale shell model calculations in the 28 < Z < 50 region.

What is better as a closed core for shell model calculations?

¹²C(^{78,86}Kr,⁸Be)^{82,90}Sr*

PHYSICAL REVIEW C 89, 064305 (2014)

Transition from collectivity to single-particle degrees of freedom from magnetic moment measurements on ⁸²₃₈Sr₄₄ and ⁹⁰₃₈Sr₅₂

G. J. Kumbartzki,^{*} N. Benczer-Koller, S. Burcher, A. Ratkiewicz, S. L. Rice, Y. Y. Sharon, and L. Zamick Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA

> K.-H. Speidel Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn, Germany

D. A. Torres Departamento de Física, Universidad Nacional de Colombia, Bogotá D.C., Colombia

The semi-magic core ⁸⁸SrVs. ⁹⁰Zr

 88 Sr and 90 Zr have been utilized as closed shell cores for large scale shell model calculations in the 28 < Z < 50 region.

What is better as a closed core for shell model calculations? $\frac{88}{40}$ Zr₅₀

- For 82Sr both g factors are in agreement with the collective value Z/A expected for nuclei in the middle of a major shell.
- The g factors in 90Sr are negative but smaller than in the isotone 92Zr.
- The results also indicate that ⁸⁸Sr is a proton-soft core nucleus and perhaps even softer than ⁹⁰Zr.

L REVIEW C 89, 064

Transition from collectivity to single-particle degrees of freedom from magnetic moment measurements on ${}^{82}_{38}\mathrm{Sr}_{44}$ and ${}^{90}_{38}\mathrm{Sr}_{52}$

G. J. Kumbartzki,^{*} N. Benczer-Koller, S. Burcher, A. Ratkiewicz, S. L. Rice, Y. Y. Sharon, and L. Zamick Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA

> K.-H. Speidel Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn, Germany

D. A. Torres Departamento de Física, Universidad Nacional de Colombia, Bogotá D.C., Colombia

Our current efforts and the next frontiers

12C(106Cd, 12C)110Sn*

Results coming soon!

Summary

- Most of g-factor values for even-even nuclei are positive.
- Negative g factors are "very" rare:
 - ⁴⁶Ca (2⁺), 92,94Zr (2⁺,4⁺) isotopes: f_{7/2}
 - 16,20O isotopes: d_{5/2}
- *Positive g factors in the f*_{7/2} *shell*
 - g(42,44Ca,2+)
- The TF technique has been implemented with radioactive beams
 - ¹²⁶Sn
 - Every case is different, contamination and lifetime drive the experiment.
- Alpha transfer reactions must be investigated to improve magnetic moment measurements.
- The Transient Field must be also studied from a first principle base to replace the current parameterizations.

In the 7th day you go Kraków and thanks the audience

Some History

Radiation Damage

May 2015 ¹⁰⁶Cd

Alpha Transfer Vs. Coulex

