

Dibaryons --- fake or true?

2nd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics Cracow, June 4 – 9, 2017

Heinz Clement

Types of conventional particles/resonances

anticolor

H. Clement

Dibaryons --- fake or true?

Two-Baryon Scenario

What do we know:

- ${}^{3}S_{1}$ deuteron groundstate: I (J^P) = 0 (1⁺) the only boundstate!
- ${}^{1}S_{0}$ virtual state (NN FSI): I (J^{P}) = 1 (0^{+}) in addition AN FSI

What would we like to know:

- Are there six-quark bags: hexaquarks (genuine dibaryons)?
- Are there in general resonant states (molecular, dynamic) at all?

Experimental findings:

- $^{1}\text{D}_{2}$ resonance structure at the ΔN threshold:
- $^{3}D_{3}$ resonance much below the $\Delta\Delta$ threshold:

Are there more states?

Theoretical predictions

 $I (J^P) = 1 (2^+)$ $I(J^{P}) = 0(3^{+})$

H. Clement

Early Predictions of Dibaryons

1964 Dyson & Xoung: 6 non-strange states
1975 Jaffe: H-dibaryon (uuddss: ΛΛ)
Thereafter:

multitude of predictions of a vast number of dibaryon states (Nijmegen group,)

Dibaryon Rush Era:
 Many experimental claims ...
 but no single one established finally

The Experimental Rush for Dibaryons

Low statistics versus high statistics (quality):

 $np \rightarrow pp\pi^- + n\pi^0$, bubble chamber

Troyan & Pechenov, Phys. At. Nucl. 56 (1993) 528

 $np \rightarrow pp\pi$, magn. spectrometer

Abramov et al., Z. Phys. C69 (1996) 409

Possibly the only surviver: ¹D₂ Resonance

Best seen in pp $\leftrightarrow d\pi^+$,

• but also in pp \rightarrow pn π^+ as well as pp and π^+ d scattering (phaseshift analyses)

Conclusion from the Failures in the Dibaryon Rush Era:

Do Exclusive and kinematically complete measurements

Our approach:

Two-pion production with best suited equipment

- 4π detector: WASA
- pellet target: p and d
- storage ring: CELSIUS \rightarrow COSY

The learning phase:

pp induced two-pion production

Following a trace:

• the ABC effect in double-pionic fusion

■ The surprise:

a narrow resonance in pn induced two-pion production

2005 - 2006

CELSIUS/WASA

WASA 4π Detector

$pn \rightarrow dibaryon \rightarrow d\pi^0 \pi^0$

H. Clement

Isoscalar : ... this is what we expected!

Isoscalar : ... and this is what we found!

Isoscalar : Results from WASA at COSY

H. Clement

16

"Experimentum Crucis" for d*

■ If d^{*} a true s-channel resonance \Leftrightarrow then also a resonance in the np system \Leftrightarrow to be sensed in np scattering \Leftrightarrow in particular in the analyzing power \Leftrightarrow resonance effect ~ $P_{3}^{1}(\Theta)$ i.e. maximal at $\Theta = 90^{\circ}$

Ay Angular Distribution at Resonance Ay Vs = 2.377 GeVNew SAID solution

SP07

50

0

-0.5

Ω

100

150,

Θ

[deg]

SAID Partial-Wave Analysis

³D₃ – ³G₃ Coupled Partial Waves

Phys. Rev. Letters 112 (2014) 202301

⇔ Genuine Resonance

2380±10 - i 40±5 MeV

Pole in ³D₃ at

in np System

H. Clement

Dibaryons --- fake or true?

Branching Ratios for the Decay of d*(2380)

hadronic decays

EPJA 51 (2015) 87

decay channel	branching	derived from	
d $\pi^0\pi^0$	14 ± 1 %	measurement	
d $\pi^+\pi^-$	23 ± 2 %	measurement	consistent with
$pp\pi^0\pi^-$	6 ± 1 %	measurement	isospin coupling
nn $\pi^+\pi^0$	6 ± 1 %	isospin mirrored	for a ΔΔ inter- mediate system
$np\pi^0\pi^0$	12 ± 2 %	measurement	
$np\pi^+\pi^-$	30 ± 4 %	measurement (old	data + HADES)
np	12 ± 3 %	measurement	
$(NN\pi)_{I=0}$	< 9 %	measurement	

Isoscalar Single-Pion Production

arxiv: 1702.07212

Comparison to predictions from Quark and Hadron Models

Width of d*(2380)

Molecule vs Hexaquark

Size of d*(2380)

Estimate from uncertainty relation:

 $\blacksquare R \approx \hbar c / \sqrt{2\mu}B$

 $B_{\Delta\Delta} \approx 80 \text{ MeV} \implies R \approx 0.5 \text{ fm}$

QCD model IHEP 0.8 fm
QCD model Nangjing 0.8 fm
Faddeev hadr. G&G 1.5 - 2 fm

A. Gal: compact hexaquark surrounded by $D_{12}\pi$ cloud PLB 769 (2017) 436

Dibaryons --- fake or true?

Rèsumè

Zhang, Chen, Shen et al.

Huang, Ping, Wang et al.

Non-Strange Two-Baryon Spectrum Gal & Garcilazo • 3 established states: ${}^{3}S_{1}$ deuteron groundstate Dyson's ${}^{1}S_{0}$ virtual state prediction E $^{1}D_{2}$ resonance (ΔN) ■ 1 new - presumably exotic - state: $\Delta \Delta$ $d^*(2380)$ resonance ($\Delta\Delta$) 0^{+} 3+ ■ Are there more states? ΔN ■ NN-decoupled states with I = 2, 3? • Search in pp \rightarrow pp π^+ $\pi^$ and in pp $\rightarrow pp\pi^+\pi^+ \pi^-\pi^-$ NN

2 3

I = 0 1

Summary

 d*(2380) established as a genuine s-channel resonance

It is the first unambiguously detected non-trivial dibaryon state.

It could be a compact hexaquark state – but this needs experimental verification.

Outlook and Open Problems

Size of d*(2380) ⇒ elm excitation of d* γd → d* → pn → dπ⁰π⁰ Observation at other installations HADES @ GSI: under way, but no 4π and no neutrals IHEP ?? e⁺e⁻ → d d* at 4.3 – 4.6 GeV ?? KEK, JPARC, LHCb, others ???

Are there more (exotic) dibaryons?
 Mirror state of d^{*} ..., strange, charmed dibaryons

$\gamma d \rightarrow d\pi^0 \pi^0$

FOREST@ELPH, Ishikawa et al., PLB in press arXiv: 1610.05532 [nucl-ex]

Crystal Ball @ MAMI Master Thesis M. Guenther, Basel 2015

Outlook and Open Problems

Size of d*(2380) ⇒ elm excitation of d* γd → d* → pn → dπ⁰π⁰ Observation at other installations HADES @ GSI: under way, but no 4π and no neutrals IHEP ?? e⁺e⁻ → d d* at 4.3 – 4.6 GeV ?? KEK, JPARC, LHCb, others ???

Are there more (exotic) dibaryons?
 Mirror state of d^{*} ..., strange, charmed dibaryons