Study of Kaonic Nuclear States with DISTO and Belle

Data

Ken Suzuki <<u>ken.suzuki@oeaw.ac.at</u>> 5.6.2017 Jaggiellonian Symposium

Overview

- Introduction: kaonic nuclear states
 - a short history
 - recent developments

- How to proceed?
 - · DISTO
 - Belle

Kaonic Nuclear States

-a short history -recent developments

Kaon in nuclei Strong attraction (I=0) Nissenschaften Kaon forms bound states with nuclei Kaon as a glue $U_{\overline{K}}^{nucl}$ $U_{\overline{K}}^{nucl}$ $U_{\overline{K}}^{nucl}$ К-+ рр K⁻ + ³He K⁻ + p MeV MeV MeV ₃*r* fm $_3r$ fm 3*r* fm 2 2 0 0 0 ∆**(1405)** $\frac{2}{K}H$ -50 -50 -50 *E*_{*k*} = -27 MeV Σ+π Σ**+**π $\overset{\Sigma+\pi}{=}$ $E_{\overline{\kappa}} = -48 \text{ MeV}$ Γ̈́ = 40 MeV <mark>3</mark>H $\Gamma = 61 \, \text{MeV}$ *E*_{*k*} = -108 MeV **Λ+**π <u>Λ+π</u> <u>Λ+π</u> $\Gamma = 20 \text{ MeV}$ -200 -200 -200 -300 -300 -300 -400 -400 -400 -500 -500 -500 K⁻pp, K⁻ppn, K⁻ppp, ... 1. Kaonic Hydrogen Exoticness / Cold compression / A(1405) problem ۲ 2. K-scattering K^{bar}N interaction extrapolated to far below the threshold З. Λ*(1405) Y.Akaishi and T.Yamazaki PRC 65 (2002) 044005

Kaon(s) in nuclei

A. Doté et al., PLB490 (2004) 51

Cold Compression??

Multiple Kaonic System

Binding energy keeps to increase?

Above ~6-multiplet, a mass per K⁻p pair (Λ^*) becomes smaller than the mass of nucleon?

Became stable, stable co-existence of matter and antimatter??

Y. Akaishi and T. Yamazaki, 2017

Symposium on Kaonic Nuclei @JPS Meeting Mar2017

- Preliminary result of the E15@J-PARC experiment was *Strange dibaryon*
 - BE=~2330 MeV/c²
 - $\Gamma = ~70 \text{ MeV/c}^2$

DISTO: T. Yamazaki, M. Maggiora, P. Kienle, K. Suzuki, et al. "Indication of a Deeply Bound and Compact K-pp State Formed in the pp→pΛK+ Reaction at 2.85 GeV. *Physical Review Letters*, *104*, 132502.

FINUDA: A. Filippi "The FINUDA Experiment, Recent Result" EXA2014.

- E27: Y. Ichikawa, T, Nagae, H. Fujioka, et al. Observation of the "K-pp-"like structure in the d(+, K+) reaction at 1.69 GeV/c. PTEP 2015 21D01.
- E15: T. Yamaga "Forefront of experimental study of the Kpp cluster", A symposium on kaonic nuclear clusters and high density matter, JPS meeting March 2017, Osaka

Symposium on Kaonic Nuclei @JPS Meeting Mar2017

- Preliminary result of the E15@J-PARC experiment was *Strange dibaryon*
 - BE=~2330 MeV/c²
 - Γ=~70 MeV/c²

DISTO: T. Yamazaki, M. Maggiora, P. Kienle, K. Suzuki, et al. "Indication of a Deeply Bound and Compact K-pp State Formed in the pp→pΛK+ Reaction at 2.85 GeV. *Physical Review Letters*, *104*, 132502.

FINUDA: A. Filippi "The FINUDA Experiment, Recent Result" EXA2014.

- E27: Y. Ichikawa, T, Nagae, H. Fujioka, et al. Observation of the "K-pp-"like structure in the d(+, K+) reaction at 1.69 GeV/c. PTEP 2015 21D01.
- E15: T. Yamaga "Forefront of experimental study of the Kpp cluster", A symposium on kaonic nuclear clusters and high density matter, JPS meeting March 2017, Osaka

Symposium on Kaonic Nuclei @JPS Meeting Mar2017

- Summary talk
 - "probably we can say, we have now $\underline{a} K^- pp$ "
 - what's next?
 - study more about the nature of observed resonance?
 - look for siblings?

Symposium on kaonic nuclei@JPS meeting, Osaka, Mar. 2017

DISTO Data Analysis

Ken Suzuki¹, Toshimitsu Yamazaki², Marco Maggiora³, Paul Kienle^{1,4+} for the DISTO collaboration

¹Stefan-Meyer-Institut für subatomare Physik, Österreichische Akademie der Wissenschaften, ²Nishina center, RIKEN, ³INFN-Torino, ⁴Technische Universität München

Introduction: X(2265) in the DISTO data

X(2265) energy

P. Kienle et al., EPJ A48 (2012) 183

 $\Lambda^{*}(1405)$ involved in the X(2265) production mechanism

X(2265) in a Dalitz plot

Population of the X(2265) is localised at the crossing point of two resonance band, X(2265) and N*(1710) \Rightarrow **Double Resonance**

Another consequence of the Double Resonance: Comment on the HADES Data at Tp=3.5 GeV

Double resonance feature of the X(2265) population set an upper limit on Tp to be ~ 3.1 GeV. At Tp=3.5 GeV the X(2265) population zone is outside the kinematically allowed area.

Next Step?

DISTO & E27

K-pp production mechanism $\Lambda(1405)p \rightarrow K$ -pp

"hard collision/formation mechanism"

DISTO

T. Yamazaki et al., PRL 104 (2010) 132502

Mass 2.267±3(stat.)±5(syst.) GeV/c² width 118±8(stat.)±10(syst.) MeV

E27@J-PARC

Y. Ichikawa et al., PTEP 2015 021D01

Mass 2.27⁺¹⁸–17(stat.)⁺³⁰–21 (syst.) GeV/c²

width 162+87_45(stat.)+66_78(syst.) MeV

K-pp production mechanism $\Lambda(1405)p \rightarrow K$ -pp

T. Yamazaki et al., PRL 104 (2010) 132502

```
Mass 2.267±3(stat.)±5(syst.) GeV/c<sup>2</sup>
width 118±8(stat.)±10(syst.) MeV
```


width 162+87_45(stat.)+66_78(syst.) MeV

Belle Data Analysis

Ken Suzuki¹, Manfred Berger¹, Christoph Schwanda², Felicitas Breibeck², K. Miyabayashi³, T. Nakano⁴, Niiyama⁵, J. Yelton⁶ for the Belle collaboration

¹Stefan-Meyer-Institut für subatomare Physik, Österreichische Akademie der Wissenschaften, ²Institut für Hochenergiephysik, Österreichische Akademie der Wissenschaften, ³Nara-WU, ⁴RCNP, ⁵Kyoto, ⁶Florida

• The strange object, the $\Lambda(1405)$, still attracts/confuses physicists over 50 years

$\Lambda(1405)$ really not a 3-quark state?

- Comment by an internal referee
 - "...I always thought that it was very easy to describe in the quark model... Sometimes I have got frustrated with some of the lower energy community who ignore the charm/B data, some of which can be extrapolated down to strange sector very successfully - it seems that there are two communities out there amongst the theorists who don't talk each other very much..."

$\Lambda(1405)$ really not a 3-quark state?

- Meson-Baryon picture is successful in describing experimental data in low energy strangeness sector.
 - T. Hyodo and D. Jido, "The nature of the Λ(1405) resonance in chiral dynamics", Progress in particle and nuclear physics 67 (2012) 55-98.
- $\Sigma\pi$ photo production line shapes by CLAS.
 - K. Moriya et al., "Measurement of the $\Sigma\pi$ photo production line shapes near the $\Lambda(1405)$ ", arXiv:1301.5000v3.
 - R.A. Schumacher and K. Moriya, "Isospin decomposition of the photo produced $\Sigma\pi$ system neat the $\Lambda(1405)$ ", arXiv:1303.0860v1.

 $e|E\rangle|^2$

- Recent lattice calculation
 - J.M.M. Hall et al., "Lattice QCD evidence that the A(1405) resonance is and antikaon-nucleon molecule", Phys. Rev. Lett. 114 (2014) 132002.
 No, MB is still the more likely scenario.
 Bridging two hadron physics communities

Key Method 1 - Weak decay of charmed hadron

to access the research objects: $\Lambda(1405)$ and strange hadrons

Bringing together light/heavy, strange/charm, low energy/high energy communities

Research Goal

- to understand the nature of the $\Lambda(1405)$
 - two-pole or single pole?
 - Σπ scattering length: **first** experimental constraint to the theory
 - KN interaction deep or shallow?
 - kaonic nuclear state (another puzzle since a decade)
 - interpretation of $X(2265)^{\prime}$ as well as other strange dibaryons

Y. Ikeda et al., Structure of $\Lambda(1405)$ and Threshold Behavior of $\pi\Sigma$ Scattering. Prog. of Theo. Phys., 125 (2011) 1205. Y. Ichikawa et al., Observation of the "K- pp-"like structure in the $d(\pi^+, K^+)$ reaction at 1.69 GeV/c. Prog. of Theo. and Exp. Phys., 2015, 21D01–0.

g. of Theo. Phys., 125 (2011) 1205. *T. Yamazaki, M. Maggiora, P. Kienle, K. Suzuki *et al.*, "Indication of a Deeply Bound and Compact K-pp State Formed in the pp→pΛK+ Reaction at 2.85 GeV", Phys. Rev. Lett., 104, (2010) 132502.

Key Method 2 - Budini-Fonda-Cabibbo method

- Budini-Fonda-Cabibbo method for a determination of scattering length of short-lived particles
 - successfully applied to the K \rightarrow ($\pi\pi\pi$) system to determine the $\pi\pi$ scattering length by the NA48/2 experiment

T. Hyodo and M. Oka (2011). Determination of the $\pi\Sigma$ scattering lengths from the weak decays of $\Lambda c.$ Phys. Rev. C84

W [MeV]

Key method 3 - Isospin filtering

- + $\pi\Sigma$ spectrum contains I=0 and I=1 components
 - · source of ambiguity to interpret experimental spectra
- $\Lambda_{c} \rightarrow \pi MB (MB=\pi\Sigma, \eta\Lambda, Kp)$
 - T=0 isospin filtering effect due to several factors*

• test the two-pole scenario

*K. Miyahara, T. Hyodo & E. Oset, Weak decay of Λc +for the study of $\Lambda(1405)$ and $\Lambda(1670)$. Phy. Rev. C 92 (2015) 055204.

Belle data analysis Status

- Data analysis is in a matured stage, Ac reconstructed successfully.
- First paper draft on the $\Lambda c \rightarrow \Sigma \pi \pi$ branching fractions in preparation.
- Further analysis may require PWA. PAWIAN software adapted to our analysis and is running.

Summary and Outlook

- Kaonic nuclei, ~15 years.
 - New era, new experimental data.
- A symposium at JPS meeting (March 2017), a milestone.
 - What's next?
 - more careful study on the nature of the observed resonance?
 - look for siblings?
- DISTO data.
- Belle data.
 - $\Lambda(1405)$ problem.

BACKUP

Comment on Epple/Fabbietti paper on DISTO analysis (arXiv:1504.02060v1)

"The two vertical dashed lines mark the excess energy for the $\Lambda(1405)$ production for the two data sets, measured by DISTO (48.8 MeV and 161.2 MeV). With help of the two curves the ratio of the Λ^* production cross section between the two DISTO energies was determined to be $\sigma_{pK} + \Lambda(1405)$ (2.5 GeV)/ $\sigma_{pK} + \Lambda(1405)$ (2.85 GeV)=0.23, for the scaled curve and 0.3 for the curve based on the free" Epple and Fabbietti, arXiv:1504.02060v1

 $\sigma_{pK} + \Lambda(1405) (2.5 \text{ GeV}) / \sigma_{pK} + \Lambda(1405) (2.85 \text{ GeV}) \sim 0.1$

experimentally almost no population

Summary and Outlook

- Various data are by now available related the DISTO X(2265)
 - DISTO X(2265) localised at $M_{p\wedge}{\sim}2.265~GeV/c^2,~M_{K\wedge}{\sim}1.71~GeV/c^2$ in the Dalitz plot
 - X(2265) production pronounced at $T_p=2.85$ GeV cannot be populated at higher T_p , as seen by HADES
 - suggesting the validity of the "hard collision/formation mechanism"
- Consistent with the picture, K^-pp produced with Λ^* as a doorway, PRC76 (2007) 045201, both in p+p and $d(\pi^+, K^+)$ reactions
- Full efficiency/acceptance correction coming

Comment on Epple/Fabbietti paper on DISTO analysis (arXiv:1504.02060v1)

Our DEV plot is to see a deviation from PS distribution. If you change the denominator of divisional operation, by including something else, the results changes as a trivial consequence.

A consistent picture on production mechanisms that explains these experimental observations would be ..

- X(2265) is the *K pp* state
 - which is populated by the "hard collision/formation" mechanism
 - Λ(1405)-p produced in short range has a high sticking probability even at q as high as 1.6 GeV/c, provided the object is high density object
 - Otherwise K pp is not populated in the p+p reaction
- *K pp* population in the *pp* reaction by the hard collision/formation mechanism
 - requires minimum $T_p \sim 2.7$ GeV. At $T_p = 2.5$ GeV the $\Lambda(1405)$ is not populated and thus no population of X(2265)
 - requires maximum $T_p \sim 3.1$ GeV.
 - because of the Double resonance feature of its population
 - K A emission into the same direction, indicating attractive FSI and/or N* resonance
 - X(2265) cannot be populated at $T_p=3.5$ GeV (HADES) because it is outside the kinematically allowed zone
 - making p+p reaction $T_p=2.85$ GeV very unique
- X(2265) population in d(π +,K+) reaction at J-PARC E27
 - the small sticking probability around 1% as observed in the J-PARC E27 is consistent with the expectation in Ref. Yamazaki and Akaishi, PRC76 (2007) 045201

Comment on arXiv:1504.02060v1

Deviation Method

Helps in finding a broad structure comp. the kinematical region

$pp \rightarrow K^+ X \rightarrow K^+(p\Lambda)$ two-body reaction

 $p+p \rightarrow p+K^+ + \Lambda * \mathsf{P}_{\mathsf{p}} = 2.85 \text{ GeV} \Leftrightarrow \varepsilon = 161 \text{ MeV}$ Phys. Rev. Lett. 104 (20,00) / $\mathfrak{P}32\mathfrak{p}02K^+ + \Lambda * \mathsf{P}_{\mathsf{p}} = 2.5 \text{ GeV} \Leftrightarrow \varepsilon = 48.8 \text{ MeV}$

?

DISTO@Saturne (polarised) proton

- Acceptance: $\Delta \phi = \pm 15.5^{\circ}$, $\Delta \theta = \pm 4$
- LH₂ Target: 2cm
- Magnet: <14.7 k gauss
- semi-cylindrical scintillating fibres
- MWPCs
- Scintillator hodoscopes
- doped Water Cherenkov counter
- First exclusive measurement with
- $T_p = 2.145, 2.5, 2.85 \text{ GeV}$

2.85 GeV Data: LAP/SAP

Exclusive data sample of $pp \rightarrow p\Lambda K^+$

The most essential cut: Large angle proton cut = $|\cos \Theta_{CM,p}| < 0.6$

Phys. Rev. Lett. 104 (2010) 132502

Wissenschaften