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Background & Motivation

e The nN s-wave interaction below N*(1535) is attractive in

a TN —nN model [Bhalelao—Liu (1985)]. Bound states of
n(548) in A>12 nuclei could exist [Haider—Liu (1986)].

e Chiral N*(1535) meson-nucleon coupled channel models
were introduced by Kaiser, Weise et al (1995-1997) and
subsequently by Oset et al (2002). These & other models

have been used to calculate n—nuclear quasibound states.

e Exp. searches for such states with proton, pion or photon
induced 7 production reactions are inconclusive. Re the
onset of binding, Krusche & Wilkin (2015) state:

“The most straightforward (but not unique) interpretation
of the data is that the nd system is unbound, the n*He is

bound, but that the n°He case is ambiguous.”
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Hints from 7n°He production

Fitted dp— n°He x-sections
below 2 MeV vs. experiment.

Remarkable energy dependence,
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This fit

A ANKE-corrected

suggesting a nearby S-matrix

pole could be in action.

Deduced a(n°He) excludes

15 20 a quasibound state pole.

Xie-Liang-Oset-Moskal-Skurzok-Wilkin, PRC 95 (2017) 015202
a(n°He) = [-(2.23£1.29)+i(4.894+0.57)] fm

e Would n“He be bound? Fix & Kolesnikov
(arXiv:1703.06591) argue: NO, since the denser ‘He

medium leads to a stronger subthreshold suppression.
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n nuclear quasibound states
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fon(y/s) from K-matrix & N*(1535) chiral models

] a,n (fm) model dependence
| a M1 M2 GW GR CS
Re 0.22 0.38 0.96 0.26 0.67

Im 0.24 0.20 0.26 0.24 0.20
Mai et al. PRD 86 (2012) 094033

Green-Wycech PRC 71 (2005) 014001
Garcia-Recio et al. PLB 550 (2002) 47
Cieply-Smejkal, NPA 919 (2013) 46

E

C
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e Re a,y varies from 0.2 to 1.0 fm, Im a,y: 0.2-0.3 fm.

e M1, M2, GW free-space models; GR, CS in-medium.

e Strong su

bthreshold fall-off in both Re f,; and Im f, .

¢ In-medium: E dependence, Pauli blocking, self energies.
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Self-consistency in mesic-atom & nuclear calculations
Cieply-Friedman-Gal-Gazda-Mares, PLB 702 (2011) 402
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Cieply-Friedman-Gal-Mares, NPA 925 (2014) 126
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In-medium n/N amplitudes
Friedman-Gal-Mares, PLB 725 (2013) 334

Cieply-Friedman-Gal-Mares, NPA 925 (2014) 126

e KG equation and self-energies:

(V24 @p —mp —TLy(wy,p) ¥ =0

op =wy, —il', /2, w, =m, — B,

[T, (wy, p) = 2w,V = _47Tm—\/ian(\/§7 p)p
e Pauli blocking (Waas-Rho-Weise NPA 617 (1997) 449):

W5 0) = megr e E0) = I

e N*(1535) = energy dependent f,n(+/s).

In medium = go subthreshold: d/s = /s — /st

0y/sm—DBnE — En Byl — EnTn(2)* + & Re Vi (V/5, p)
Self—con81stency relatlonshlp between d/s & p




Model dependence 1
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e E dependence treated self consistently.

e Larger Re a,y = larger B,.

e Widths are unrelated to Im a,y.



Model dependence 11
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Sensitivity of calc. By, & I'y;, to self-consistency version

e (§,/s) goes deeper into subthreshold, thereby reducing
further By, & I'y;, .

e GR’s widths are too large to resolve n bound states.
Why I',(GR) > I', (CS) for similar Im a, 7
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Model predictions
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for small widths

e Widths of only a few MeV in each of these models.

¢ What makes the subthreshold values of Im f, v

sufficiently small to generate small widths?
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Onset of n nuclear binding
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n/N model input
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CM s-wave scattering amplitude F,y(E) in two meson-baryon

coupled-channel N*(1535) models.
ayy =0.964i0.26 fm, a;3=0.67+i0.20 fm

e Derive local, energy dependent potentials v,y (E;r) that
reproduce F,y(E) below threshold, for use in solving the
nNIN, nNNN, nNNNN few-body Schroedinger equations.
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nN(E) — VnN(E) in models GW & CS
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Strength b(E) of effective potential v,x(E) at £ < 0
E:r)= — A1 b(E A 3 _ A%?
VUN( )= 2 N (E) o/r ) P 1

e Scale A is inversely proportional to the range of v,y.

e In pionless EFT, vector-meson exchange requires
A< 4 fm™!
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Energy dependence in 1 nuclear
few-body systems

e N*(1535) induces strong energy dependence
of the scattering amplitudes f,y(1/s) and
the effective input potentials v, (1/s).

® S — (\/St — B77 — BN)2 — (15;7 —|—]5)N)2 < St
e Expanding nonrelativistically near ,/s;:
_ N2
(63/5) = =B + A1E, — e L(Tw) — &, (431) (T,
0v/s = /s — /5w, By =(H—Hy), & = Gy

(my-+my)*

e Self-consistency:
output (y/s) = input /s.
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Recent SVM results for n*‘He

Self consistency plot

n“‘He bound-state energy
Ea <5\/§> & <HN>7 for
AV4’ VNN & GW VnN(E)

with scale A=4 fm!.
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e Stochastic Variational Method calculations with

correlated (Gaussian trial wavefunctions.
e 7d is definitely unbound in both GW and CS (2015).
e n°He is nearly or just bound in GW & unbound in CS.
e n*He is bound in GW and just or nearly bound in CS.
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Scale dependence; semi-realistic NIN
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e These bindings will decrease by <0.3 MeV when

Im v is treated nonperturbatively.

e AV4’ is more realistic for NN than Minnesota (MNC).
e CS does not bind n°He & unlikely to bind n*He.
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Scale dependence; pionless EFT
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e Two NN & one NNN contact terms at LO.
Add one nNN contact term (~ b(E)).

e No 7NN contact term needed to avert collapse.

e Crucial role of self consistency in reducing n binding.
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Summary

e Subthreshold behavior of f,y is crucial in
studies of n-nuclear bound states to decide
whether (i) such states exist, (ii) can they be
resolved (i.e. widths), and (iii) which nuclear

targets and reactions to try.

e The onset of binding n°He requires a minimal
value of Re a,y close to 1 fi, yielding then a
few MeV 7 binding in 1 *He. The onset of
binding n‘He requires a lower value of Re a,N,

roughly exceeding 0.7 fm.

Thanks to my collaborators N. Barnea, B. Bazak,
A. Cieply, E. Friedman, J. Mares
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