AMADEUS results and future plan

Low-energy QCD in the u-d-s sector

$$\mathcal{L}_{eff} = \mathcal{L}_{mesons}(\Phi) + \mathcal{L}_B(\Phi, \Psi_B)$$

- Chiral perturbation theory: interacting systems of N-G bosons (pions, kaons) coupled to baryons works well for $\pi\pi$, π N, K⁺N ... NOT for K⁻N !!
- $K^- = (s\bar{u})$ strangeness = -1, $K^+ = (\bar{u}s)$ strangeness = +1

strange baryons stable respect to strong interaction all have s = -1

 the sub-threshold region is dominated by resonances → complex multichannel dynamics
 Λ(1405) just below KN threshold (1432 MeV)

Possible solutions:

- Non-perturbative Coupled Channels approach: Chiral Unitary SU(3) Dynamics
- phenomenological KN and NN potentials

 $\Lambda(1405)$ is located slightly below the KN threshold (1432 MeV)

Three quark model picture difficulties to reproduce the $\Lambda(1405)$:

- According to its negative parity, one of the quarks has to be excited to l = 1
- nucleon sector, we find the N(1535) \rightarrow the expected mass of the Λ^* is around 1700 MeV
- too big energy splitting observed between the $\Lambda(1405)$ and the $\Lambda(1520)$ interpreted as the spin-orbit partner ($J^p = 3/2^{-}$).
- pentaquark (4q + qbar in *l* = 0), but also predicts other, unobserved, excited baryons,

R. Dalitz and collaborators first suggested to interpret $\Lambda(1405)$ as an KN quasibound state.

R.H. Dalitz, T.C. Wong and G. Rajasekaran, Phys. Rev. 153 (1967) 1617.

BUBBLE CHAMBER search of the $\Lambda(1405)$:

- O. Braun et al. Nucl. Phys. B129 (1977) 1

K- induced reactions on d $\rightarrow \Sigma^{-}\pi^{+}n$ the resonance is found & 1420 MeV

- D. W. Thomas et al., Nucl. Phys. B56 (1973) 15 pion induced reaction π - p \rightarrow K+ $\pi \Sigma$ the resonance is found & 1405 MeV

- R. J. Hemingway, Nucl. Phys. B253 (1985) 742 $K^-p \rightarrow \pi^-\Sigma^+(1660) \rightarrow \pi^-(\pi^+\Lambda(1405)) \rightarrow \pi^-\pi^+(\pi\Sigma) \& 4.2 \text{ GeV}$ analysed by Dalitz and Deloff $M = 1406.5 \pm 4.0 \text{ MeV}, \ \Gamma = 50 \pm 2\text{MeV}$

THE "LINE-SHAPE" OF THE Λ(1405) DEPENDS ON THE OBSERVED CHANNEL !!

$$\frac{d\sigma(\Sigma^{-}\pi^{+})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} + \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$
$$\frac{d\sigma(\Sigma^{+}\pi^{-})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} - \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$
$$\frac{d\sigma(\Sigma^{0}\pi^{0})}{dM} \propto \frac{1}{3} |T^{0}|^{2}$$

THE "LINE-SHAPE" OF THE Λ(1405) DEPENDS ON THE OBSERVED CHANNEL !!

$$\begin{aligned} \frac{d\sigma(\Sigma^{-}\pi^{+})}{dM} &\propto \frac{1}{3} \left| T^{0} \right|^{2} + \frac{1}{2} \left| T^{1} \right|^{2} + \frac{2}{\sqrt{6}} \operatorname{Re}(T^{0}T^{1*}) \\ \frac{d\sigma(\Sigma^{+}\pi^{-})}{dM} &\propto \frac{1}{3} \left| T^{0} \right|^{2} + \frac{1}{2} \left| T^{1} \right|^{2} - \frac{2}{\sqrt{6}} \operatorname{Re}(T^{0}T^{1*}) \\ \frac{d\sigma(\Sigma^{0}\pi^{0})}{dM} &\propto \frac{1}{3} \left| T^{0} \right|^{2} \end{aligned}$$

IS DIFFERENT IN $\Sigma^+ \pi^- VS \Sigma^- \pi^+$

DUE TO ISOSPIN INTERFERENCE

THE "LINE-SHAPE" OF THE Λ(1405) DEPENDS ON THE OBSERVED CHANNEL !!

$$\frac{d\sigma(\Sigma^{-}\pi^{+})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} + \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$
IS DIFFERENT IN $\Sigma^{+}\pi^{-}$ VS $\Sigma^{-}\pi^{+}$

$$\frac{d\sigma(\Sigma^{+}\pi^{-})}{dM} \propto \frac{1}{3} |T^{0}|^{2} + \frac{1}{2} |T^{1}|^{2} - \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$
DUE TO ISOSPIN INTERFERENCE
$$\frac{d\sigma(\Sigma^{0}\pi^{0})}{dM} \propto \frac{1}{3} |T^{0}|^{2}$$

THE CLEANEST SIGNATURE OF THE $\Lambda(1405)$ IS GIVEN BY THE NEUTRAL CHANNEL:

- is free from isospin interference
- is purely I = 0, no $\Sigma(1385)$ contamination.

$\Lambda(1405)$.. the golden channel

Crystall Ball: K-p $\rightarrow \Sigma^0 \pi^0 \pi^0$ for kaon momentum in the range (514-750 MeV/c). S. Prakhov et al. Phys Rev. C70 (2004) 03465 (interpreted by Magas et al. PRL 95, 052301 (2005))

COSY julich: $pp \rightarrow pK^+ \Sigma^0 \pi^0$

(I. Zychor et al., Phys. Lett. B 660 (2008) 167)

CLAS: $\gamma p \rightarrow K^+ \Sigma \pi$

AIP Conf.Proc. 1441 (2012) 296-298

Fig. 4. a) Missing-mass $MM(p_{Fd}K^+)$ distribution for the $pp \to pK^+p\pi^-X^0$ reaction for events with $M(p_{Sd}\pi^-) \approx m(\Lambda)$ and $MM(pK^+p\pi^-) > 190 \,\mathrm{MeV/c^2}$. Exper-

$\Lambda(1405)$.. the golden channel

Fig. 4. a) Missing–mass $MM(p_{Fd}K^+)$ distribution for the $pp \to pK^+p\pi^-X^0$ reaction for events with $M(p_{Sd}\pi^-) \approx m(\Lambda)$ and $MM(pK^+p\pi^-) > 190 \,\mathrm{MeV/c^2}$. Exper-

Chiral unitary models: $\Lambda(1405)$ is an I = 0 quasibound state emerging from the coupling between the \overline{KN} and the $\Sigma\pi$ channels. Two poles in the neighborhood of the $\Lambda(1405)$:

AY (local, energy independent) potential in **far-subthreshold** region

Two main **biases**:

- the kinematical energy threshold 1412 MeV
 (M_K + M_p |BE_p|) the high pole energy region is closed,
- The shape and the amplitude of the NON-RESONANT $\Sigma \pi$ production below KbarN threshold is unknown.

- $\Lambda(1405)$ is observed in the $\Sigma^0 \pi^0$ decay channel (pure isospin 0),
- K- is absorbed in-flight on a bound proton with $p_{K} \sim 100$ MeV, $\Sigma \pi$ invariant mass gain of ~ 10 MeV to open an energy window to the high mass pole.
- Knowledge of the $\Sigma\pi$ NON-RESONANT production amplitude.

Fig. 6. Detailed differences in $M_{\Sigma\pi}$ spectra among the Hyodo–Weise prediction and the present model predictions.

AMADEUS & DAΦNE

DAΦNE

- double ring e⁺e⁻ collider working at C.M. energy of φ, producing ≈ 1000 φ /s
 φ → K⁺K⁻ (BR = (49.2 ± 0.6)%)
 low momentum Kaons
 - ≈ 127 Mev/c
 - **back to back** K⁺K⁻ topology

AMADEUS step 0 \rightarrow KLOE 2004-2005 dataset analysis ($\mathscr{L} = 1.74 \text{ pb}^{-1}$)

KLOE

• Cilindrical drift chamber with a 4π geometry and electromagnetic calorimeter

96% acceptance

- optimized in the energy range of all **charged particles** involved
- good performance in detecting photons and neutrons checked by kloNe group [M. Anelli et al., Nucl Inst. Meth. A 581, 368 (2007)]

K⁻ absorption on light nuclei

At-rest VS in-flight K⁻ captures

AT-REST K⁻ absorbed from atomic orbit (p_K~ 0 MeV)

<u>IN-FLIGHT</u> (p_к~100MeV)

The scientific goal of AMADEUS

Low energy QCD in strangeness sector is still waiting for experimental conclusive constrains on:

1) **K-N potential** \rightarrow how deep can an antikaon be bound in a nucleus?

- U_{KN} strongly affects the position of the $\Lambda(1405)$ state \rightarrow we investigate it through $(\Sigma - \pi)^0$ decay --- $\Upsilon \pi$ CORRELATION

- if U_{KN} is strongly attractive then K⁻ NN bound states should appear \rightarrow we investigate through (Λ/Σ -N) decay --- Y N CORRELATION
- 2) Y-N potential → extremely poor experimental information from scattering data
 - U_{yN} determines the strength of the final state YN (elastic & inelastic) scattering in nuclear environment \rightarrow could be tested by YN CORRELATION

The scientific goal of AMADEUS

Low energy QCD in strangeness sector is still waiting for experimental conclusive constrains on:

1) **K-N potential** \rightarrow how deep can an antikaon be bound in a nucleus?

- U_{KN} strongly affects the position of the $\Lambda(1405)$ state \rightarrow we investigate it through $(\Sigma - \pi)^0$ decay --- $\Upsilon \pi$ CORRELATION

- if U_{KN} is strongly attractive then K⁻ NN bound states should appear \rightarrow we investigate through (Λ/Σ -N) decay --- Y N CORRELATION
- 2) Y-N potential → extremely poor experimental information from scattering data
 - U_{yN} determines the strength of the final state YN (elastic & inelastic) scattering in nuclear environment \rightarrow could be tested by Y N CORRELATION

K⁻ - N single nucleon absorption the case of the Λ(1405)

$\Lambda(1405)$ case

FIG. 4: Theoretical $(\pi^0 \Sigma^0)$ invariant mass distribution for an initial kaon lab momenta of 687 MeV. The non-symmetrized distribution also contains the factor 1/2 in the cross section.

Complex interpretation due to K- H absorptions ongoing with the collaboration of A. Cieply (UJF, Prague)

 $\mathbf{p}_{\pi 0}$ resolution: $\sigma_{p} \approx 12 \text{ MeV/c}$

$\Sigma^+\pi^-$ correlation

K· p → Σ⁺ π⁻ detected via: (pπ⁰) π⁻

Possibility to disentangle: Hydrogen, in-flight, at-rest, K- capture

$\Sigma^+\pi^-$ correlation

 $K^{-}p \rightarrow \Sigma^{+} \pi^{-}$ detected via: ($p\pi^{0}$) π^{-}

Possibility to disentangle: Hydrogen, in-flight, at-rest, K- capture

if resonant production contribution is important a high mass component appears! Invariant Mass in DC wall ² 400 ⁴ 400 ² 400 ¹ Total ¹ IF H Invariant Mass in DC gas Counts / 5 MeV/c^2 001 000 001 001 001 001 Entries 3186 Entries 1275 Mean 1411 Mean 1411 RMS RMS 15.39 16.43 Total н IF 4He 300 E IF 12C 140 AR 4He 250 AR 12C 120 100 200 80 150 60 100F 40 50E 20 ٩E 0 1360 1380 1400 1420 1440 1460 1360 1380 1400 1420 1440 1460 Sig+ Pi- Invariant Mass (MeV/c^2) Sig+ Pi- Invariant Mass (MeV/c^2)

Resonant VS non-resonant

 $K^{-} N \rightarrow (Y^{*} ?) \rightarrow Y \pi$ in medium, how much comes from resonance ?

Non resonant transition amplitude:

 Never measured before below threshold (33 MeV below threshold):

$$E_{Kn} = -|B_n| - \frac{p_3^2}{2\mu_{\pi,\Lambda,3He}},$$

- few, old theoretical calculations (Nucl. Phys. B179 (1981) 33-48)

Resonant VS non-resonant

Investigated using: $\mathbf{K}^{-} \mathbf{n}^{-} \rightarrow \Lambda \pi^{-}$ direct formation in ⁴He

the goal is to measure $|f^{N-R}_{\Lambda\pi}(I=1)|$ to get information on $|f^{N-R}_{\Sigma\pi}(I=0)|$

$K^{-4}He \rightarrow \Lambda p^{-3}He$ resonant and non-resonant processes Nucl. Phys. A954 (2016) 75-93

Δ

³He

Δ

d/pp

N

π-

Ľ.

a.

Theoretical shapes for :

total $\Lambda\pi^{-}$ momentum spectra for the resonant (Σ^{*}) and non-resonant (I = 1) processes were calculated, for both S-state and P-state K⁻ capture at-rest and in-flight. Corrections to the amplitudes due to Λ/π final state interactions were estimated.

Collaboration with S. Wycech

How to extract the $K^- n \rightarrow \Lambda \pi^-$ non resonant transition amplitude

simultaneous fit $(p_{\Lambda\pi} - m_{\Lambda\pi} - \cos(\theta_{\Lambda\pi}))$ with signal and background processes :

- non resonant K^- capture at-rest from S states in ⁴He
- resonant K^- capture at-rest from S states in ⁴He
- non resonant K^- capture in-flight in ⁴He
- resonant K^- capture in-flight in ⁴He
- primary $\Sigma \pi^-$ production followed by the $\Sigma N \to \Lambda N'$ conversion process
- K^- capture processes in ¹²C giving rise to $\Lambda \pi^-$ in the final state

In order to extract:

NR-ar/RES-ar & NR-if/RES-if

Results for the $K^- n \rightarrow \Lambda \pi^-$ non resonant transition amplitude

reinninar

Channels	$\operatorname{Ratio}/\operatorname{Amplitude}$	$\sigma_{\rm stat}$	$\sigma_{\rm syst}$
RES-ar/NR-ar	0.39	± 0.04	$^{+0.18}_{-0.07}$
RES-if/NR-if	0.23	± 0.03	$^{+0.23}_{-0.22}$
NR-ar	12.00~%	\pm 1.66 $\%$	$^{+1.96}_{-2.77}~\%$
NR-if	19.24~%	\pm 4,38 $\%$	$^{+5.90}_{-3.33}~\%$
$\Sigma \to \Lambda$ conv.	2.16~%	\pm 0.30 $\%$	$^{+1.62}_{-0.83}$ %
$K^{-12}C$ capture	57.00 %	\pm 1.23 $\%$	$^{+2.21}_{-3.19}~\%$

TABLE I. Resonant to non-resonant ratios and amplitude of the different channels extracted from the fit of the $\Lambda\pi^-$ sample. The statistical and systematic errors are also shown. See text for details.

> extracted: NR-ar/RES-ar & NR-if/RES-if

Simultaneous momentum – angle – mass fit

Simultaneous momentum – angle – mass fit

Comparison

Non-Resonant (at-rest) (in-flight) Resonant Σ * (at-rest) (in-flight)

Outcome of the measurement

From the well known Σ^* transition probability:

The sub-threshold result is compatible with corresponding values extracted from K⁻ p $\rightarrow \Lambda \pi^0$ cross sections above threshold

J. K. Kim, Columbia University Report, Nevis 149 (1966)

J. K. Kim, Phys Rev Lett, 19 (1977) 1074:

E = -33 MeV	$p_{lab} = 120 \ {\rm MeV}$	$160~{\rm MeV}$	$200~{\rm MeV}$	$245~{\rm MeV}$
$0.334 \pm 0.018 \operatorname{stat}_{-0.058}^{+0.034} \operatorname{syst}$	0.33(11)	0.29(10)	0.24(6)	0.28(2)

K⁻ - multiN absorption and search for bound states

Possible Bound States:

$(\mathbf{K}^{-}\mathbf{p}\mathbf{p})\to\Lambda\mathbf{p}$	$(K^{-}ppn) \rightarrow \Lambda d$
$\rightarrow \Sigma^0 p$	$\rightarrow \Sigma^0 d$

predicted due to the strong KN interaction in the I=0 channel. [Wycech (1986) - Akaishi & Yamazaki (2002)]

K⁻pp bound state

....at the end of 2015

	Dote,Hyodo, Weise	Akaishi, Yamazaki	Barnea, Gal, Liverts	Ikeda, Sato	Ikeda, Kamano,Sato	Schevchenko ,Gal, Mares	Revai, Schevchenko	Maeda, Akaishi, Yamazaki
B (MeV)	17-23	48	16	60-95	9-16	50-70	32	51.5
Г(MeV)	40-70	61	41	45-80	34-46	90-110	49	61
Method	Variational	Variational	Variational	Faddeev- AGS	Faddeev- AGS	Faddeev- AGS	Faddeev- AGS	Faddeev- Yakubovsky
Interaction	Chiral	Phenom.	Chiral	Chiral	Chiral	Phenom.	Chiral	Phenom.

Experiments reporting DBKNS							
KEK-PS E549	T. Suzuki at al. MPLA23, 2520-2523 (2008)						
FINUDA	M. Agnello et al. PRL94, 212303 (2005)	Extraction of a signal					
DISTO	T. Yamazaki et al. PRL104 (2010)	Extraction of a signal					
OBELIX	G. Bendiscioli et al. NPA789, 222 (2007)	Extraction of a signal					
HADES	G. Agakishiev et al. PLB742, 242-248 (2015)	Upper limit					
LEPS/SPring-8	A.O. Tokiyasu et al. PLB728, 616-621 (2014)	Upper limit					
J-PARC E15	T. Hashimoto et al. PTEP, 061D01 (2015)	Upper limit					
J-PARC E27	Y. Ichikawa et al. PTEP, 021D01 (2015)	Extraction of a signal					

K⁻pp bound state.....the theory

Chiral SU(3)-based (Energy dependent) → Shallow~20 MeV Phenomenological (Energy independent) → Deep~40-70 MeV

	Dote,Hyodo, Weise	Akaishi, Yamazaki	Barnea, Gal, Liverts	Ikeda, Sato	Ikeda, Kamano,Sato	Schevchenko ,Gal, Mares	Revai, Schevchenko	Maeda, Akaishi, Yamazaki
B (MeV)	17-23	48	16	60-95	9-16	50-70	32	51.5
Γ(MeV)	40-70	61	41	45-80	34-46	90-110	49	61
Method	Variational	Variational	Variational	Faddeev- AGS	Faddeev- AGS	Faddeev- AGS	Faddeev- AGS	Faddeev- Yakubovsky
Interaction	Chiral	Phenom.	Chiral	Chiral	Chiral	Phenom.	Chiral	Phenom.

Large width means short-life state \rightarrow hard to measure **Small width** means long-life state \rightarrow easy to measure

interpreted in

T. Sekihara, E. Oset, A. Ramos, Prog. Theor. Exp. Phys (2016) (12): 123D03

J-PARC E15

$K^{-} + {}^{3}He \rightarrow \Lambda + p + n$

Invariant mass spectroscopy

Σ **0** p correlated production, goals of this analysis

K- Absorption

 Pin down the contribution of the process:

$$K^- + NN \to \Sigma^0 + p$$

with respect to processes as: $K^- + NN \rightarrow \Sigma^0 + p \rightarrow p" + \Sigma^0" (FSI)$ $K^- + NNN \rightarrow \Sigma^0 + p + X$ $K^- + NNNN \rightarrow \Sigma^0 + p + X$ **Kaonic Bound States**

$$ppK^- \to \Sigma^0 + p$$

Yield Extraction and Significance

From the contributions to the fit, the yields are extracted for K- stop

Absorption results

	yield / $K_{stop}^{-} \cdot 10^{-2}$	$\sigma_{stat} \cdot 10^{-2}$	$\sigma_{syst} \cdot 10^{-2}$
2NA-QF	0.127	± 0.019	$+0.004 \\ -0.008$
2NA-FSI	0.272	± 0.028	$^{+0.022}_{-0.023}$
Tot 2NA	0.376	± 0.033	$^{+0.023}_{-0.032}$
3NA	0.274	± 0.069	$^{+0.044}_{-0.021}$
Tot 3body	0.546	± 0.074	$^{+0.048}_{-0.033}$
4NA + bkg.	0.773	± 0.053	$^{+0.025}_{-0.076}$

... is there room for the signal of a **ppK- bound state**?

Evaluation of the significance of the ppK- **signal** For B.E. = 45 MeV/c2, Width = 30 MeV/c2

 $Yield/K^-_{stop} = (0.044 \pm 0.009 stat^{+0.004}_{-0.005} syst) \cdot 10^{-2}$

F-test to evaluate the addition of an extra parameter to the fit:

Significance of "signal" hypothesis w.r.t "Null-Hypothesis" (no bound state)

Conclusions

- 2NA-QF yield

	yield / $K_{stop}^{-} \cdot 10^{-2}$	$\sigma_{stat} \cdot 10^{-2}$	$\sigma_{syst} \cdot 10^{-2}$
2NA-QF	0.127	± 0.019	$+0.004 \\ -0.008$

- No significant detection of ppK- bound state

O. Vazquez Doce et al., Physics Letters B 758 (2016) 134

$K^{-4}He \rightarrow \Lambda t$

4NA cross section and yield

At available data

Available data:

• in Helium :

- bubble chamber experiment [M.Roosen, J.H. Wickens, II Nuovo Cimento 66, (1981), 101] K⁻ stopped in liquid helium, Λ dn/t search. 3 events compatible with the Λ t kinematics were found

 $BR(K^{-4}He \rightarrow \Lambda t) = (3 \pm 2) \times 10^{-4}/K_{stop}$

global, no 4NA

Solid targets

- FINUDA [Phys.Lett. B669 (2008) 229] (40 events in different solid targets)

∧t available data

FINUDA presented [Phys.Lett.B (2008) 229]:

- a study of Λ vs t momentum correlation and an opening angle distribution
- 40 events collected and added together coming from different targets (^{6,7}Li, ⁹Be)

At correlation studies in ⁴He from the DC gas : contributing processes

Tritons are spectators, **too low momentum**: p_t ~ Fermi momentum lower then the calorimeter threshold (p_t ~ 500 MeV/c) <u>checked by MC simulations</u>

4NA processes – K⁻ absorbed by the **α particle**:

 $\label{eq:K-4} \begin{array}{lll} K^{-4}He \ \rightarrow \ \Lambda t \\ \\ K^{-4}He \ \rightarrow \ \Sigma^0 t \ , \ \ \Sigma^0 \ \ \rightarrow \ \Lambda y \end{array}$

conversion is suppressed by the Σ⁰- t Back to back topology!

Mass calculated by TOF (MeV/c²)

MC simulations: efficiency & resolution

mass threshold at-rest

 M_{At} invariant mass resolution = 2.2 MeV/c²

overall detection + reconstruction efficiency for 4NA direct At production :

 $\epsilon_{4NA,ar,\Lambda t} = 0.0493 \pm 0.0006$; $\epsilon_{4NA,if,\Lambda t} = 0.0578 \pm 0.0006$, at-rest in-flight

$K-^{4}He \rightarrow \Lambda t$ 4NA cross section

Contribution to the spectra	Parameter value
K^{-4} He $\rightarrow \Lambda t$ at rest	0.01 ± 0.01
K^{-4} He $\rightarrow \Lambda t$ in-flight	0.09 ± 0.02
K^{-4} He $\rightarrow \Sigma^0 t$ in-flight	0.05 ± 0.03
$K^{-12}C \rightarrow \Lambda t$ experimental distribution from the carbon DC wall	0.85 ± 0.06
$\chi^2 \ / \ {f ndf}$	0.654

Total number of events = 136

4NA K^{-4} He $\rightarrow \Lambda t$ at rest $\rightarrow 1 \pm 1$ events 4NA K^{-4} He $\rightarrow \Lambda t$ in flight $\rightarrow 12 \pm 3$ events

 $BR(K^{-4}He(4NA) \rightarrow \Lambda t) < 1.3 \times 10^{-4} / K_{stop}$

 σ (100 ± 19 MeV/c) (K⁻⁴He(4NA) → Λt) = = (0.42 ± 0.13(stat) ^{+0.01}_{-0.02} (syst)) mb

perspectives:

- Sub-threshold K- n $\rightarrow \Lambda \pi^{-}$ non resonant amplitude Nucl. Phys. A954 (2016) 75-93

 $|f_{ar}^{s}| = (0.334 \pm 0.018 \operatorname{stat}_{-0.058}^{+0.034} \operatorname{syst}) \operatorname{fm}.$

experimental paper finalised

next step extract the same info in I = 0 to interpret the $\Sigma^0 \pi^0$ spectra

- K- multiN absoption yields in Σ^0 p Physics Letters B 758 (2016) 134

	yield / $K_{stop}^{-} \cdot 10^{-2}$	$\sigma_{stat} \cdot 10^{-2}$	$\sigma_{syst} \cdot 10^{-2}$
2NA-QF	0.127	± 0.019	$+0.004 \\ -0.008$

Same analysis is ongoing in Λp (R. Del Grande PhD thesys)

- K- ⁴He \rightarrow At 4NA cross section $\sigma(100 \pm 19 \text{ MeV/c}) (\text{K}^{-4}\text{He}(4\text{NA}) \rightarrow \text{At}) = (0.42 \pm 0.13(\text{stat})^{+0.01} (\text{syst})) \text{ mb } \text{paper in preparation}$
- feasibility study of the Σ^0 N/NN *two* and *three body forces* measurement from K-absoption in ⁴He

Low-energy QCD in the u-d-s sector

- strong interaction is governed by QCD (color SU(3) gauge theory)
- fundamental matter fields are quarks (6 flavors & 3 colors R, G, B)

Low-energy antikaon-nuclei interaction studies by AMADEUS Piscicchia Kristian

Low-energy QCD in the u-d-s sector

- CHIRAL PERTURBATION THEORY

a chiral Lagrangian with effective degrees of freedom *U* takes the place of the **QCD** Lagrangian:

$$\exp\{iZ\} = \int \mathcal{D}q \mathcal{D}\bar{q} \mathcal{D}A_{\mu} \exp\left\{i\int d^{4}x \mathcal{L}_{QCD}\right\} = \int \mathcal{D}U \exp\left\{i\int d^{4}x \mathcal{L}_{eff}\right\}$$

lowest excitations (pseudoscalar mesons):

 $\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta & \pi^{+} & \kappa^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta & \kappa^{0} \\ \kappa^{-} & \bar{\kappa}^{0} & -\frac{2}{\sqrt{2}} \eta \end{pmatrix}$ the counting rule is defined considering the meson momentum small respect to the

Similar for the baryon fields:

with chiral field $U(\Phi) = \exp\left\{\frac{i\sqrt{2}\Phi}{f}\right\}$ ch. sy. Breaking scale $4\pi f \sim 1$ GeV.

Low-energy antikaon-nuclei interaction studies by AMADEUS

Piscicchia Kristian

Why AMADEUS & DAΦNE?

Neutron detection efficiency

Fig. 1. $n \pi^0$ invariant mass spectrum measured by the KLOE EMC, the red line corresponds to data, the black one corresponds to a Monte Carlo simulation of the $\Lambda \rightarrow n \pi^0$ decay, reconstructed in the KLOE calorimenter.

KLOE

- 96% acceptance,
- optimized in the energy range of all charged particles involved
- good performance in detecting photons (and neutrons checked by kloNe group (M. Anelli et al., Nucl Inst. Meth. A 581, 368 (2007)))

The presence of a $\Lambda(1116)$ is the signature of K- absorption and is the starting point of the performed analysis:

reconstruction of the Λ decay vertex: $\Lambda(1116) \rightarrow p\pi^{-}(BR \sim 64\%)$

requests:

- vertex with at least two opposite charged particles
- spatial position of vertex inside DC, or in DC entrance wall
- tracks with dE/dx > 95 ADC counts.

First positive tracks are requested to have an associated cluster in the calorimeter and the correct E - p relation, lack of low momentum protons!

20

Ecal

A pedestrian approach to AMADEUS: data selection

A pedestrian approach to AMADEUS: data selection

Raffaele Del Grande

10/18

Photons selection

1) Select events with at least three neutral clusters ($E_{c1} > 20$ MeV) not from K decay (K+ $\rightarrow \pi^+ \pi^0$)

2) photon clusters selection: a first minimization is performed χ_t² = t²/σ_t² where t = t_i - t_j is the difference between time of flights in light speed hypothesis. This selects three photon clusters in time from the Λ decay vertex r_Λ.
3) photon clusters identification: to distinguish photon clusters from π⁰ decay, from γ₃ (due to Σ⁰ decay) a second minimization is performed on χ_π² :

$$\chi_{\pi\Sigma}^2 = \frac{(m_{\pi^0} - m_{ij})^2}{\sigma_{ij}^2} + \frac{(m_{\Sigma^0} - m_{k\Lambda})^2}{\sigma_{k\Lambda}^2}$$

i,*j* and *k* represent one of the previously selected candidate photon cluster.

4) Cuts on χ_t^2 and $\chi_{\pi\Sigma}^2$ variables were optimized using MC simulations. Specific cuts are introduced in order to avoid the selection of splitted clusters or background for π^0

The algorithm has (from true MC information) an efficiency (98±1)% to identify photons and (78±2)% to select the correct triple of neutral clusters.

Photons selection

K- ⁴He $\rightarrow \Lambda \pi$ - ³He <u>events selection</u>

 K^{-}

K- ⁴He $\rightarrow \Lambda \pi$ - ³He <u>events selection</u>

 \mathbf{K}^{-}

 $Λ π^-$ direct production At-rest RES + NR

Background sources: - $\Lambda \pi^-$ events from $\Sigma p/n \rightarrow \Lambda p/n$ conversion

- $\Lambda \pi^-$ events from K⁻¹²C absorptions in Isobutane

Further background sources

a) FSI of the Λ was found to introduce a correction to the amplitude < 3%.

b) FSI of the π is found to be negligible.

 \mathbf{K}^{-}

K- 4He → Λ π- 3He <u>background</u> ∑ p/n → Λ p/n conversion: Each possible conversion channel was simulated Σ^0 p / Σ^0 n / Σ^+ n / At-rest / In-flight / from RES and N-R produced ∑s

 $\Lambda \pi \text{-} \text{ events from K}^{-12} C \text{ absorptions in Isobutane (90% He, 10% C_4H_{10}): }$ $K^{-12} C \text{ DATA in the KLOE DC wall are used }$ $\text{estimated contribution: } % (K^{-12}C) = 0.44 \pm 0.13$ $N_{KC} / N_{KHe} = (n_{KC} / n_{KHe}) \cdot (\sigma_{KC} / \sigma_{KHe}) \cdot (BR_{KC} (\Lambda \pi^{-}) / BR_{KHe} (\Lambda \pi^{-}))$

Nuovo Cimento 39 A 338-347 (1977)

K^{- 12}C not calculated:

- uncertain initial state of K meson $l_{\rm K} = 1, 2, 3$
- 4 nucleons in s-orbit, 8 nucleons in p-orbit
- final state hyperon interactions

At correlation studies.. the background

Red points – events containing an **extra proton** (not possible in pure ⁴He)

→ K^{- 12}C captures in isobutane

MC simulations: K⁻ 4NA in ⁴He at-rest

$$E_{i} = E_{f} = \sqrt{m_{\Lambda}^{2} + P^{2}} + \sqrt{m_{t}^{2} + P^{2}} = 4221 \text{MeV/c}^{2} \rightarrow$$
$$|\mathbf{P}| = |\mathbf{p}_{\Lambda}| = |\mathbf{p}_{t}| = 711.7 \text{MeV/c}$$

kinematics is closed

Lower mass threshold

MC simulations: K⁻ 4NA in ⁴He in-flight

higher mass threshold

At correlation studies in ⁴He from the DC gas

At correlation studies in ⁴He from the DC gas

BR calculation

Cross section calculation

 $N_{AV} = 6.022 \cdot 10^{23}$ - Avogadro number

 $A_{gas} = 4.003 \text{ g} - \text{atomic weight of }^{4}\text{He}$

 $\rho_{max} = 0.4271 \ 10^{-3} \ g/cm^3$ from which 4He partial density was obtained

 L_{gas} = sum of lenghts of 5 cm to take care of the kaon decay
Mean K- momentum at hadronic absorption in-flight

K- momentum when interacting in-flight in the DC gas, obtained by fitting the $\Sigma + \pi$ - momentum spectrum, from K- H absorptions (H from C4H10), Gaussian + polinomial fit.

Advantages:

- Pk not dependent on the hadronic channel,
- high statistics
- good resolution

Pκ = 99.81 ± 18.81 MeV/c

Mean K- momentum at hadronic absorption in-flight

K- momentum when interacting in-flight in the DC gas, obtained by fitting the $\Sigma + \pi$ - momentum spectrum, from K- H absorptions (H from C4H10), Gaussian + polinomial fit.

Advantages:

- Pk not dependent on the hadronic channel,
- high statistics
- good resolution

Pκ = 99.81 ± 18.81 MeV/c

At invariant mass geometric + reconstruction acceptance

Obtained by simulating: K- 4NA absorptions on 4He (at-rest + in-flight) K- 4NA absorptions on 12C (at-rest + in-flight) w. o. final state K- 4NA absorptions on 12C (at-rest + in-flight) with final state of the lambda

In order to cover all the available phase space, correlations mantained by conserving energy and momentum. 2.5 * 10^5 simulated events.

At invariant mass geometric + reconstruction acceptance corrected

K-4NA absorptions on 4He in-flight

Not significantly distorted