

Proton radiography in proton therapy treatment

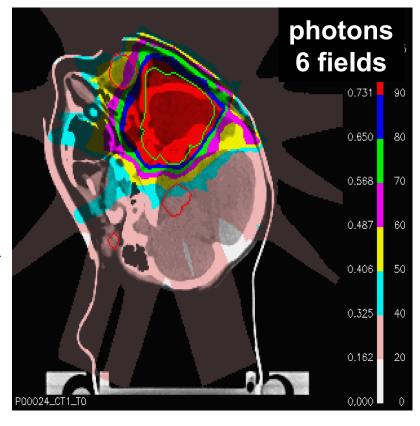
Aleksandra K. Biegun

4-9 June 2017, Cracow, Poland

a.k.biegun@rug.nl

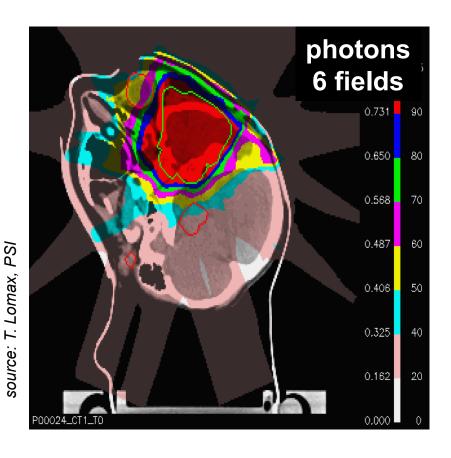
kvi - center for advanced radiation technology

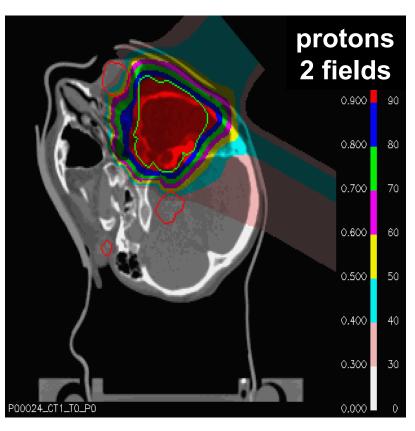
A.K. Biegun E.R. van der Graaf S. Brandenburg



M-J van Goethem

J. Visser
M. van Beuzekom
F.N. Koffeman


Photons vs. protons

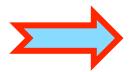


source: T. Lomax, PSI

Photons vs. protons

Integral dose to healthy tissue for protons is 6 times lower!

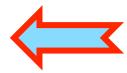
Proton therapy work flow

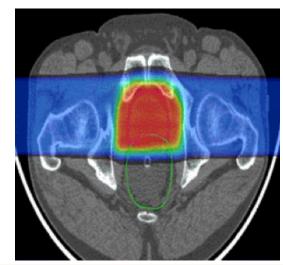


CT scan

$$HU = 1000 \frac{\mu - \mu_{water}}{\mu_{water}}$$

Translation



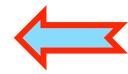

3D map of proton stopping powers (PSP)

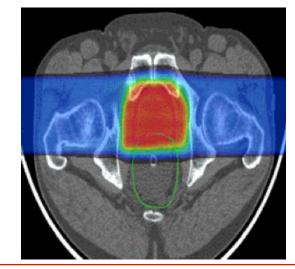
Proton therapy work flow

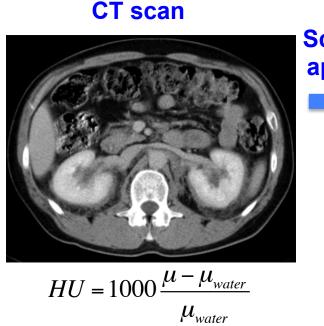
CT scan

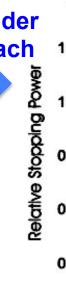
$$HU = 1000 \frac{\mu - \mu_{water}}{\mu_{water}}$$

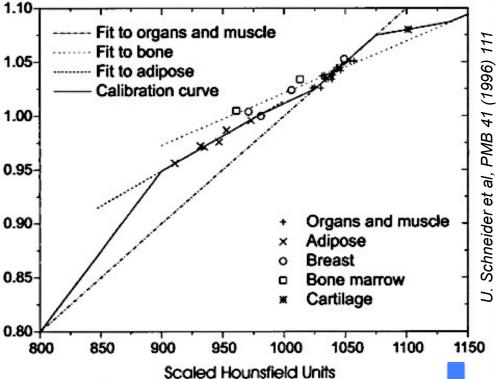
Knowledge of patient




3D map of proton stopping powers (PSP)



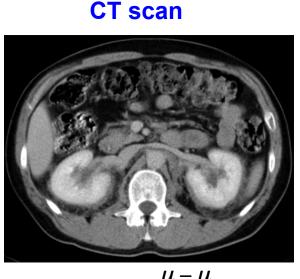

Knowledge of patient in proton therapy treatment

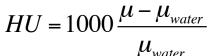


kvi - center for advanced radiation technology

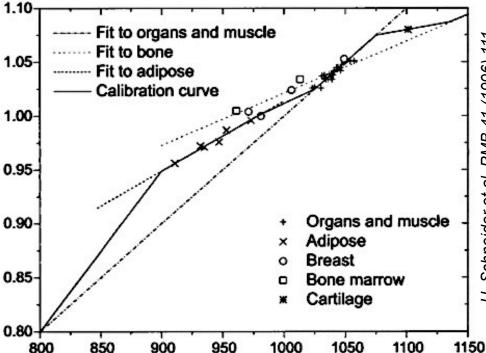
- Conversion HU to stopping power is NOT unique
- Systematic uncertainties of 3-4% require larger than neccessary irradiation safety margins around the tumor

3D map of proton


stopping powers


... And the consequence...

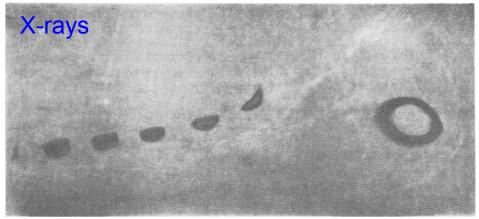
kvi - center for advanced radiation technology


Schneider et al, PMB 41 (1996) 111

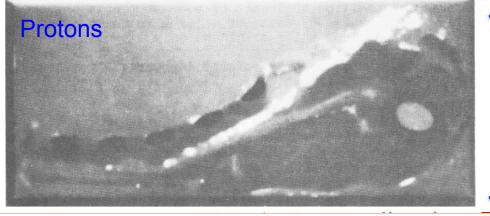
Scaled Hounsfield Units

3D map of proton

stopping powers

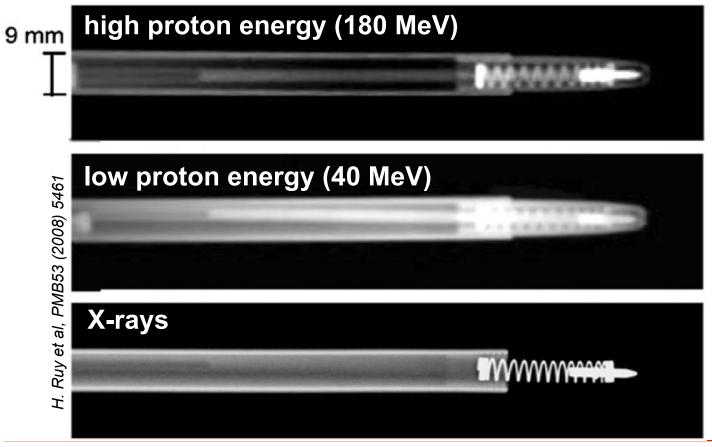

- Conversion HU to stopping power is NOT unique
- Systematic uncertainties of 3-4%
 require larger than neccessary
 irradiation safety margins around the tumor

Leads to increased dose in healthy tissues


Why proton radiography?

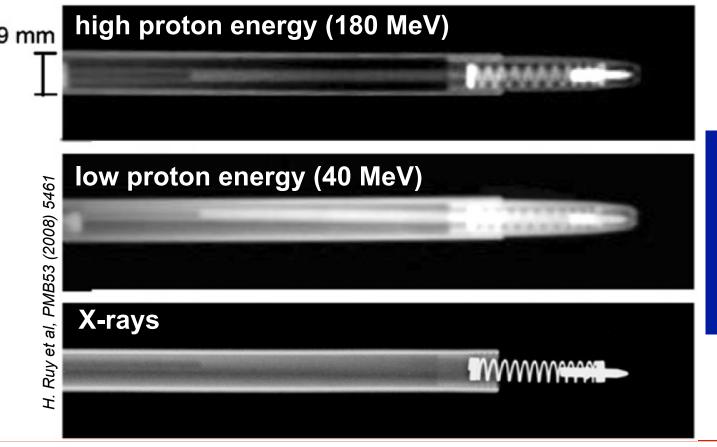
- A lamb chop 1 cm thick immersed in 12.5 cm thick water phantom
- ightharpoonup E_{X-rays} = 30 kVp
- \Leftrightarrow E_p = 160 MeV

- (-) much less contrast for fat
- (-) no contrast for lean meat (muscle)
- (+) much better spatial resolution



- (-) poor spatial resolution
- (+) high contrast for soft tissues

Why proton radiography?


- High resolving power for proton beam (centerpiece of the pen visible)
- X-ray produces a clearer image of the spring, but density resolution for the centerpiece is not high

Why proton radiography?

- High resolving power for proton beam (centerpiece of the pen visible)
- X-ray produces a clearer image of the spring, but density resolution for the centerpiece is not high

Protons
help
to improve
determination
of energy losses
in "soft material"

Pros and Cons

Advantage:

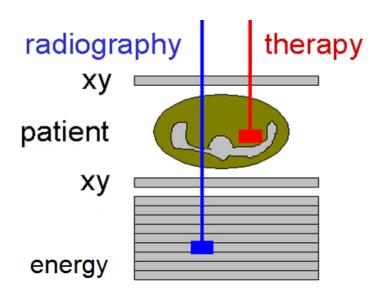
Proton stopping powers measured <u>directly</u>

L

Decrease uncertainty of Relative PSP (RPSP)
derived from stoichiometric calibration with X-ray CT

Optimize treatment plan for the patient

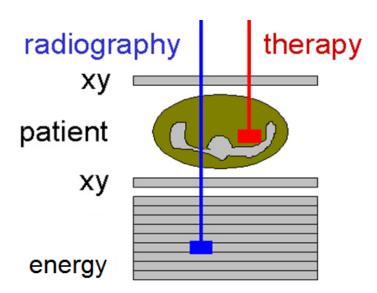
Challenge:



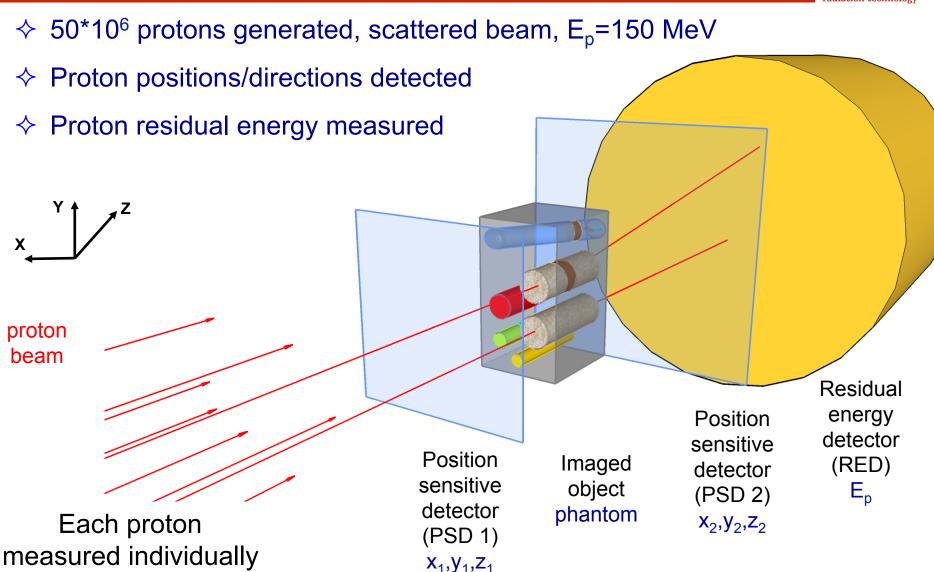
Proton undergoes multiple Coulomb scattering causing image blurring

What is proton radiography?

Proton beam energy higher than the therapeutic energies,
 i.e. protons pass through the patient

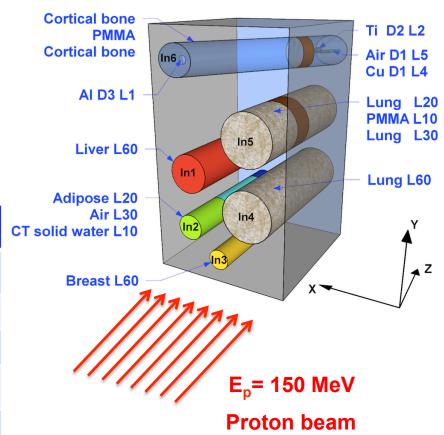

What is proton radiography?

Proton beam energy higher than the therapeutic energies,
 i.e. protons pass through the patient


- Position sensitive detectors:
- Range / residual energy detector:

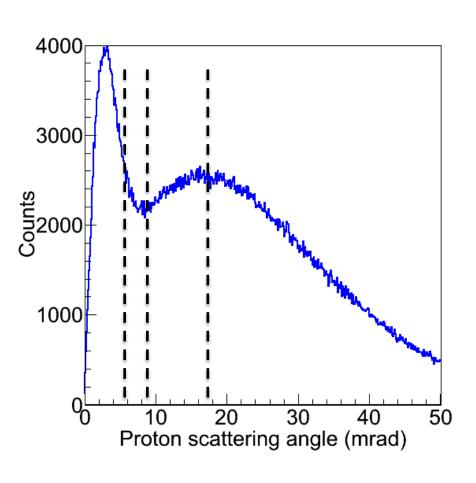
before and after the patient after the patient

Proton radiography: Geant4 MC simulations



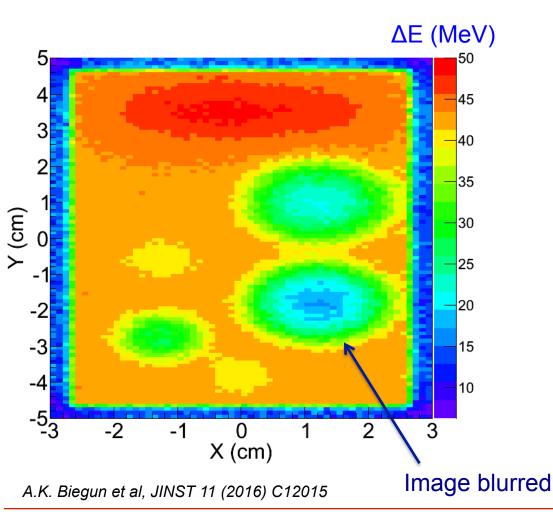
Complex phantom (54 x 94 x 60 mm³)

- ♦ Few materials on proton beam
- 11 various materials, including5 tissue surrogates


Phantom material	Physical density (g/cm ³)	Phantom material	Physical density (g/cm ³)
Cortical bone*	1.820	Breast*	0.981
PMMA	1.180	Lung*	0.428
Liver*	1.095	Al	2.702
Adipose (fat)*	0.946	Ti	4.519
Air	0.0012	Cu	8.920
CT solid water	1.045	* Tissue-e	quivalent materials

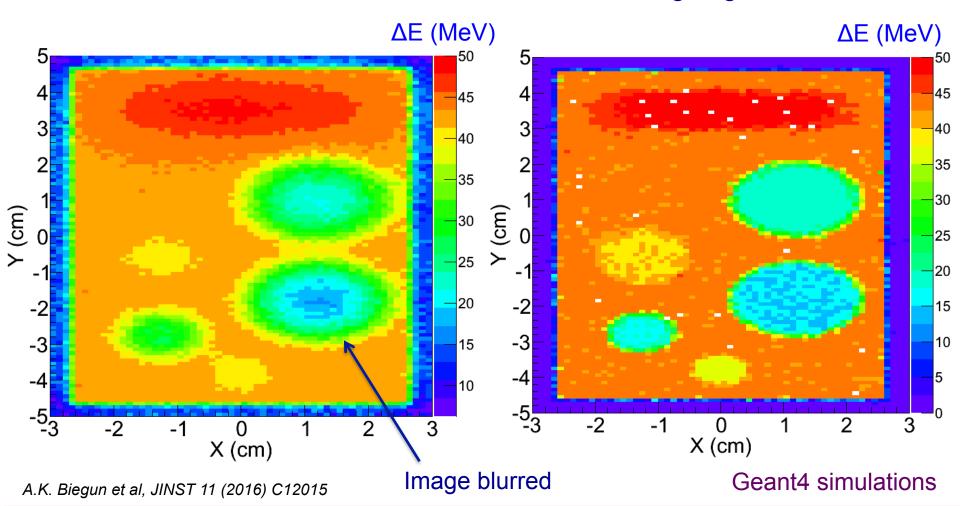
https://www.sunnuclear.com/documents/datasheets/gammex/ct_electron_density_phantom.pdf

Proton scattering angle, θ

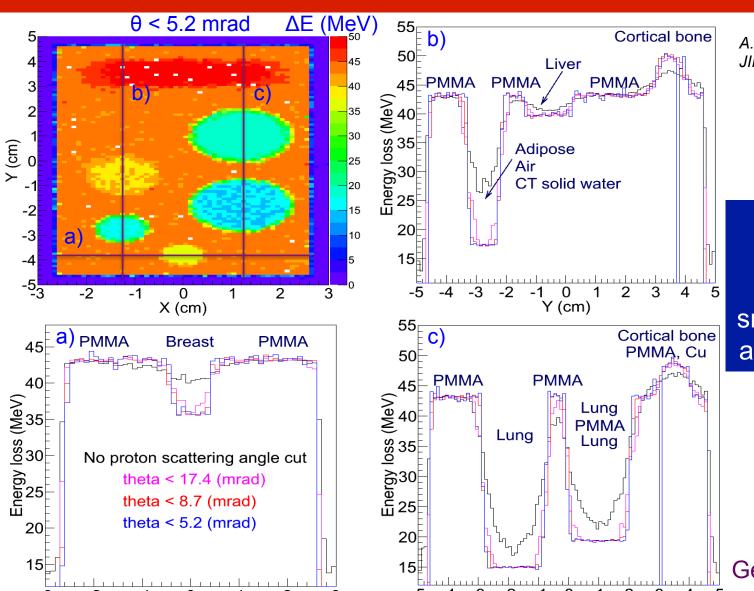

$$\theta(rad) = \cos^{-1} \begin{pmatrix} \overrightarrow{p_0} \ \overrightarrow{p_3} \\ | \overrightarrow{p_0} \ | | \overrightarrow{p_3} \\ | p_0 \end{pmatrix}$$

$$p_0, p_3$$
 – proton momenta in the source and energy detector, respectively

Energy loss radiographs: $\Delta E = E_{beam} - E_{residual}$


Protons that passed through all 3 detectors are considered

Energy loss radiographs: $\Delta E = E_{beam} - E_{residual}$

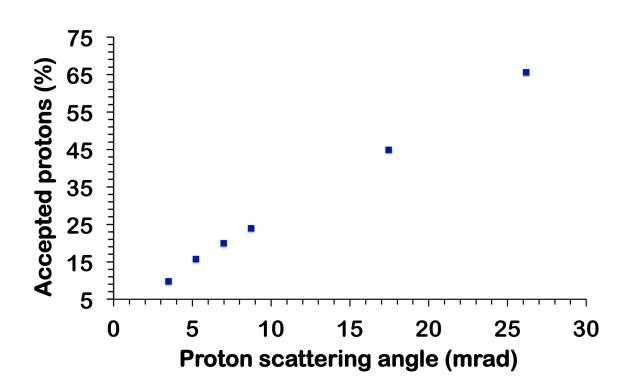


Protons that passed through all 3 detectors are considered ♦ Protons with maximum scattering angle θ < 5.2 mrad

Energy loss radiographs: Projections

X (cm)

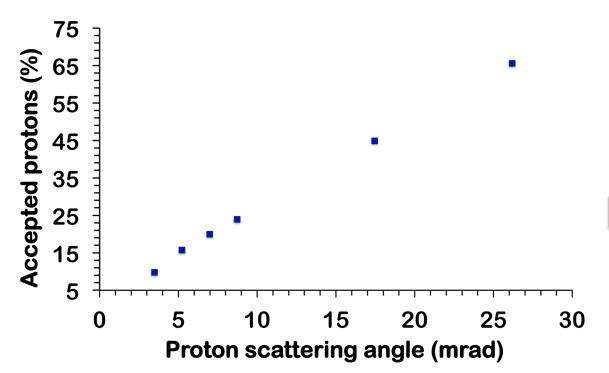
Y (cm)


A.K. Biegun et al, JINST 11 (2016) C12015

Sharper edges
between
materials for
smaller scattering
angles of protons

Bin size: 1 mm

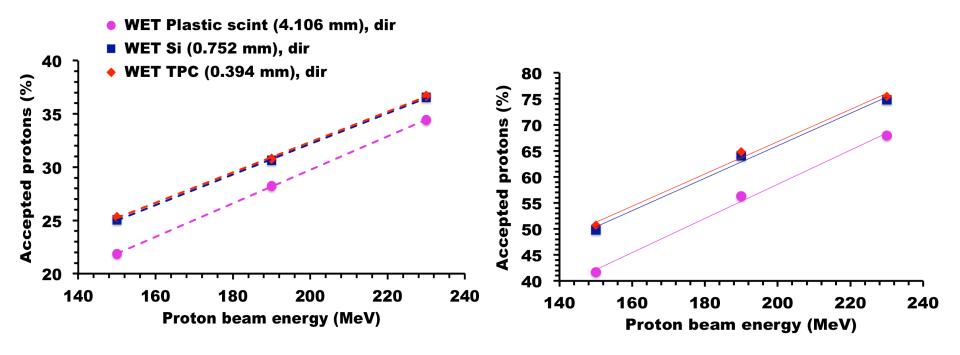
Statistics @ E_p = 150 MeV



θ (mrad)	Accepted protons (%)
26.2	65.6
17.4	44.9
8.7	23.9
6.7	20.0
5.2	15.7
3.5	9.8

Statistics @ $E_p = 150 \text{ MeV}$

Accepted protons (%)
65.6
44.9
23.9
20.0
15.7
9.8


Significant number of protons (>70%) simulated at E_p=150 MeV is eliminated at θ < 8.7 mrad

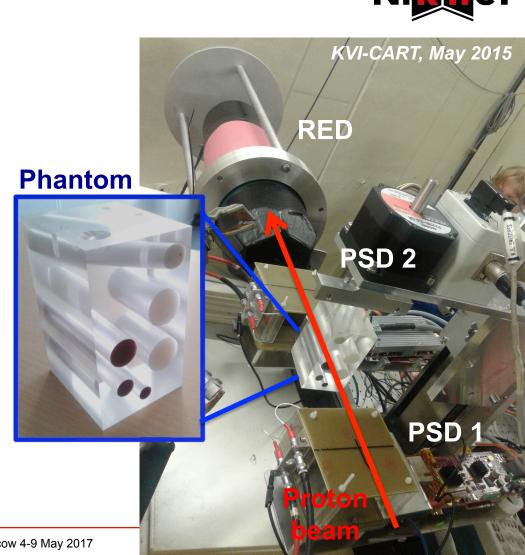
Statistics @ E_p = 150, 190 and 230 MeV

$$\Phi$$
 θ_{12}^{\uparrow} < 8.7 mrad

$$\Rightarrow \theta_{12}^{pos} < 8.7 \text{ mrad}$$

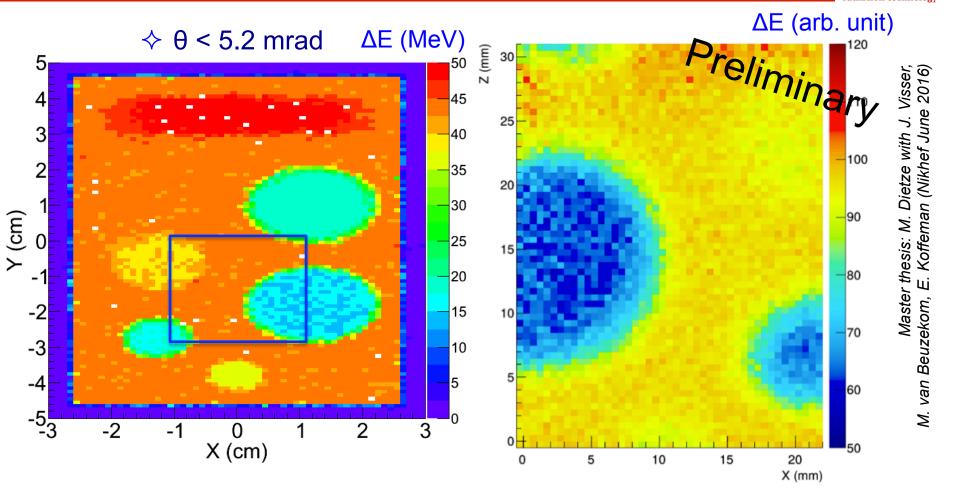
A.K. Biegun et al, under review at Physica Medica: EJMP

Proton radiography @KVI-CART: Exp setup'15

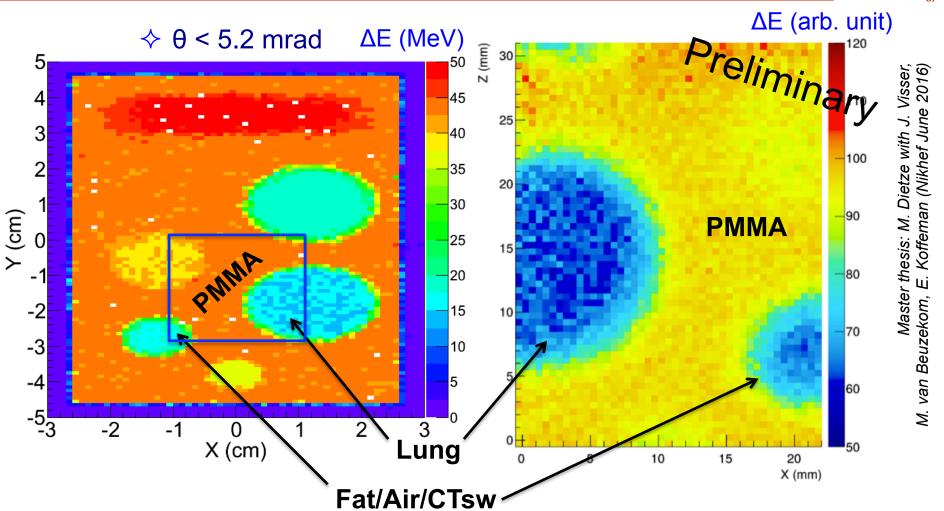


Collaboration with <u>J. Visser</u>, M. van Beuzekom, E.N. Koffeman

- ♦ Tracking detectors:
 - Timepix3-based TPC
 - Count rate ~20 kHz
- ♦ Energy: BaF₂ scintillator
- → Proton beam energy:
 - E_p = 150 MeV
 AGOR @KVI-CART
 Groningen (NL)


Count rate not yet high enough as required in clinics

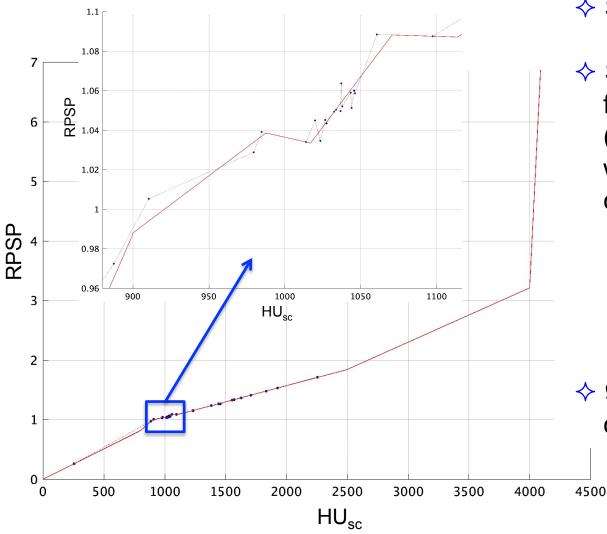
Energy loss reconstruction: Sims vs. Exp'2015



♦ Phantom only partially covered by Timepix3-based TPCs (3.0 x 3.0 cm²)

Energy loss reconstruction: Sims vs. Exp'2015

kvi - center for advanced radiation technology



Simulations and experimental results comparable!

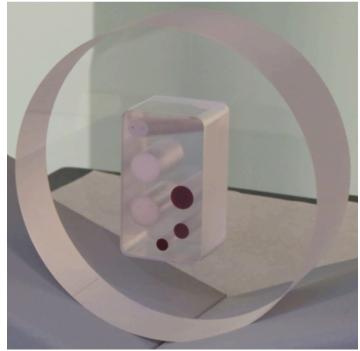
Clinical calibration curve (120 kVp)

Master thesis: K. Ortega Marin with A.K. Biegun (KVI-CART/RuG July 2016)

- Specific for the scanner
- Stoichiometric method for biological tissues (35 standard human tissues) was used to obtain clinical calibration curve

W. Snyder et al, Report of the Task Group on Reference Man, ICRP publication (1975)

U. Schneider, E. Pedroni, A. Lomax, PMB 41 (1996) 111


♦ 9 linear segments in the calibration curve

$$HU_{sc} = 1000 * \mu / \mu_{water}$$

 $HU_{sc} = HU + 1000$

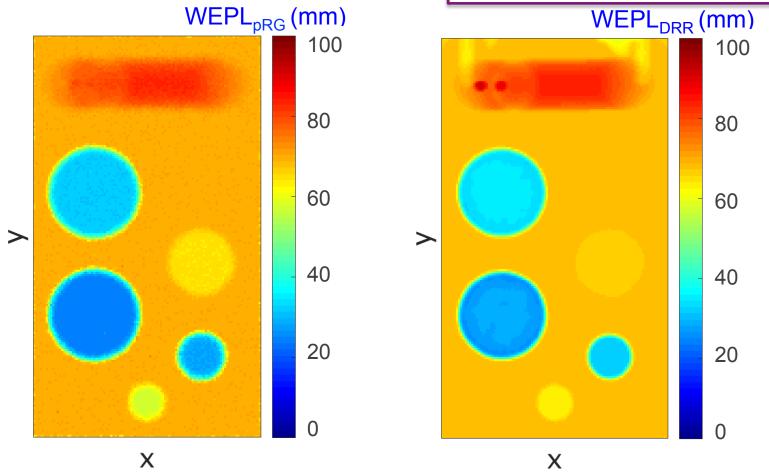
Gammex and Complex phantoms in CT scanner

♦ Siemens Somatom Definition AS (Radiotherapy department, UMCG)

December 2015. Acknowledgment to Arjen van der Schaaf, UMCG

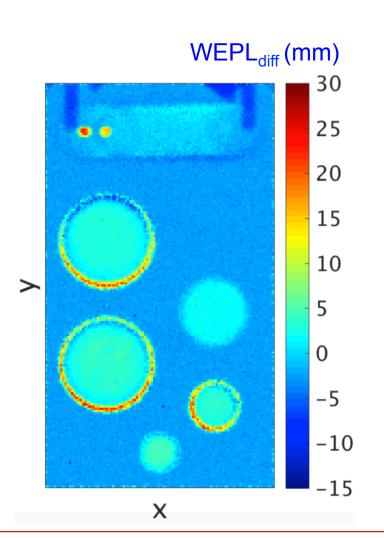
- ♦ X-ray CT tube voltage:
 - Gammex (calibration) phantom: 120 kVp
 - Complex (patient) phantom: 70, 80, 100, 120 and 140 kVp
- CT scan of Gammex phantom to create a clinical calibration curve with tissue materials

Master thesis: K. Ortega Marin with A.K. Biegun KVI-CART/RuG July 2016)


Water Equivalent Path Length (WEPL)

radiation technology

→ Proton radiography: protons scattered < 5.2 mrad


 $WEPL_{DRR(x,y)} = \sum \rho_s (HU_{SC}(x,y,z)) \Delta z$

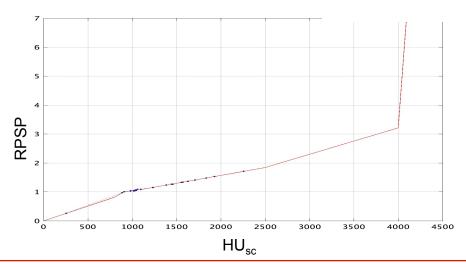
Difference between WEPL_{DRR} and WEPL_{pRG}

Master thesis: K. Ortega Marin with A.K. Biegun (KVI-CART/RuG July 2016)

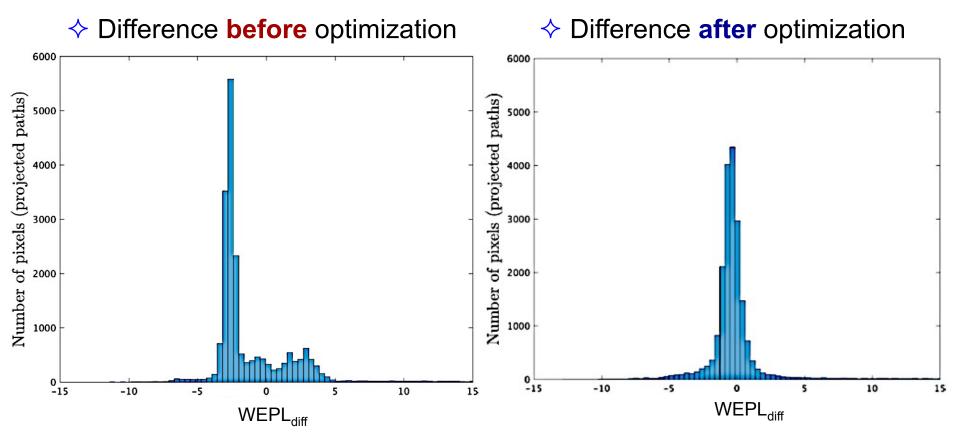
Large overestimation in WEPL at high density materials (Cu, Ti)

♦ WEPL_{DRR} > WEPL_{pRG} in all inserts

- ♦ WEPL_{DRR} < WEPL_{pRG} in surrounding **PMMA**
 - → PMMA not included in the clinical calibration curve

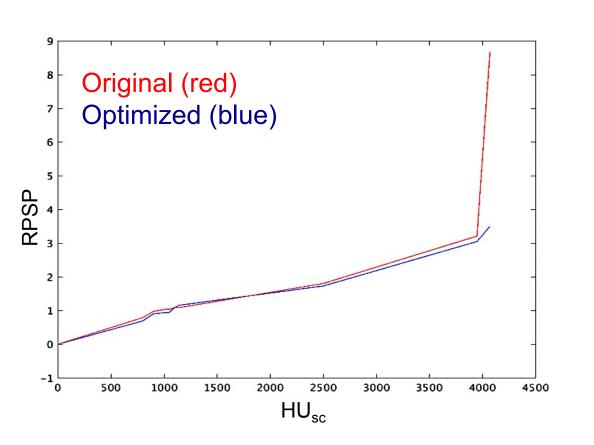

Metrics to optimize the clinical calibration curve

RMSE =
$$\sqrt{\frac{\sum_{x,y}(\text{WEPL}_{DRR}(x,y) - \text{WEPL}_{pRG}(x,y))^2}{N}}$$


$$\chi^{2} = \sum_{x,y} \frac{(\text{WEPL}_{DRR}(x,y) - \text{WEPL}_{pRG}(x,y))^{2}}{\text{WEPL}_{pRG}(x,y)}$$

♦ Modifications of RPSP splitting point for 9 segments were done after either RMSE or χ^2 was minimized

Number of pixels with certain WEPL



 Large fraction of pixels have a difference in WEPL between
 -2.5 mm and -3.5 mm (PMMA)

Original & optimized clinical calibration curves

Master thesis: K. Ortega Marin with A.K. Biegun (KVI-CART/RuG July 2016)

Before optimization

Metric	With PMMA
RMSE	3.59 mm
χ^2	5083.80

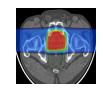
After optimization

Metric	With PMMA
RMSE	2.36 mm (-34.33%)
χ ²	2287.10 (-55.01%)

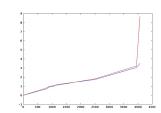
- Delivers proton stopping powers directly
- MCS decreases image quality, but angular selection improves it
- Experiments and simulations with the Complex (patient) phantom have been done

- → Experimental results of ΔE are comparable with simulations

 CT scans of Gammex (calibration) and Complex (patient) phantoms


- ♦ WEPL_{DRR} WEPL_{DRG}
- Optimization of the "patient-specific" calibration curve for Complex (patient) phantom

- → Optimized **RPSP** for treatment planning

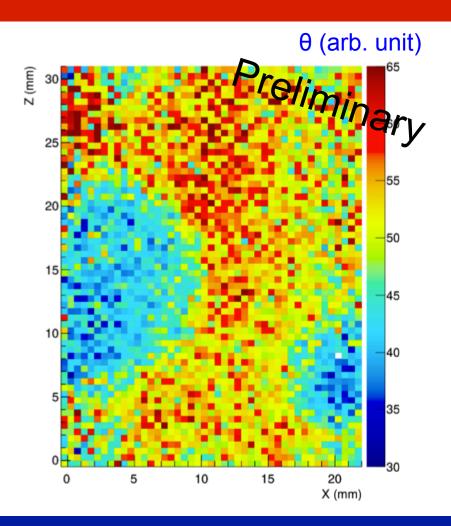

Future work

Compare proton treatment plan before / after optimization

Further optimization of the clinical calibration curve: spit of each segments into smaller segments to account for larger heterogeneities in human tissue

Include CT/DECT patient data in Geant4 MC pRG simulations

- Development of detectors (tracking and energy) for pRG to achieve clinically relevant count rates (> MHz)
- Validate Geant4 MC simulations with the pRG experimental data


Backup slides

Scattering angle reconstruction: Exp'2015

Scattering angle well reconstructed, but more statistics needed

Current systems	Group	Year	PSDs (# of units)
	PSI	2005	x-y Sci-Fi (4)
Proton Proton RED, Range detector	LLU/UCSC/ NIU	2013	x-y SiSDs (4)
	LLU/UCSC/ CSUSB	2014	x-y SiSDs (4)
Patient	AQUA	2013	x-y GEMs (2)
Trend towards Si tracking detectors	PRIMA I	2014	x-y SiSDs (4)
→ very fast	PRIMA II	2014	x-y SiSDs (4)
Different approaches for energy/range	INFN	2014	x-y Sci-Fi (4)
detectors	NIU/FNAL	2014	x-y Sci-Fi

Niigata

University

PRaVDA

Count rate close to

what is required

_J (2015) **88**:20150134

G. Poludniowski et al., Br J Radiol

PSI	2005	x-y Sci-Fi (4)	Plastic scintillator telescope	1 M
LLU/UCSC/ NIU	2013	x-y SiSDs (4)	CsI (TI)	15 k
LLU/UCSC/ CSUSB	2014	x-y SiSDs (4)	Plastic scintillator hybrid telescope	2 M
AQUA	2013	x-y GEMs (2)	Plastic scintillator telescope	1 M
PRIMA I	2014	x-y SiSDs (4)	YAG:Ce calorimeter	10 k
PRIMA II	2014	x-y SiSDs	YAG:Ce	1 M

(4)

x-y SiSDs

(4)

X-u-v

SiSDs

2014

2015

Rate

(Hz)

1 M

2 M

5 k

1 M

Imaging

device

pRad

pCT

pCT

pRad

pCT

pCT

pCT

pCT

pCT

pCT

RED/Range

Detector

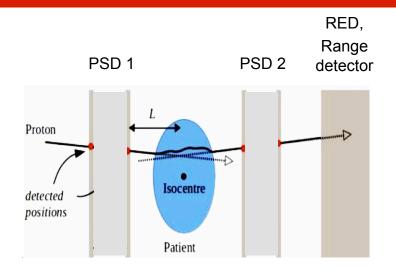
calorimeter

x-y Sci-Fi

Plastic scintillator

telescope

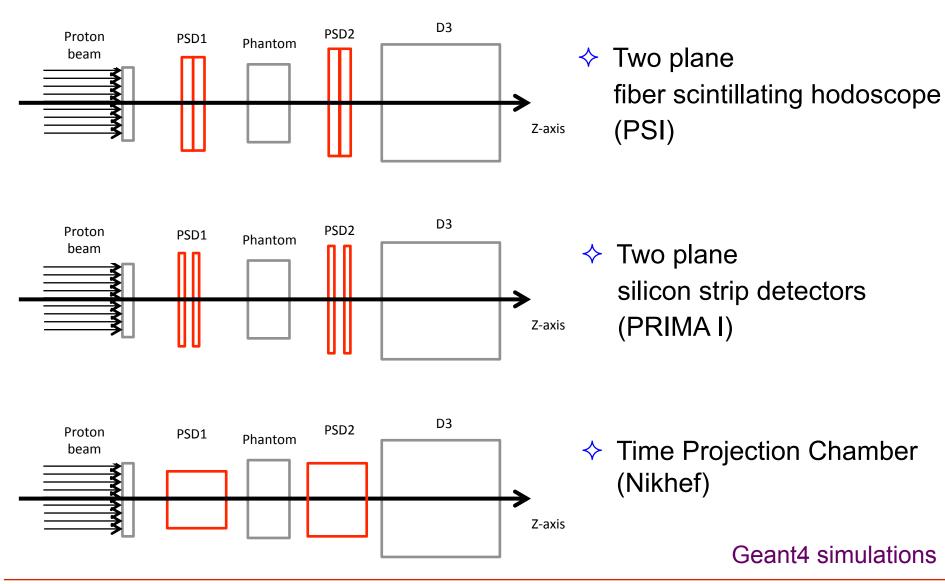
Nal (TI)


calorimeter

CMOS APS

telescope

But...



- ♦ Si (Z=14, ρ =2.33 g/cm³)
 - → Multiple Coulomb Scattering already in the detector material
- Range detector does not give yet accurate enough residual energy important for proton stopping powers determination of an object

Simulations for:	Group	Year	PSDs (# of units)	RED/Range Detector	Rate (Hz)	Imaging device
RED,	PSI	2005	x-y Sci-Fi (4)	Plastic scintillator telescope	1 M	pRad
PSD 1 PSD 2 Range detector Proton L	LLU/UCSC/ NIU	2013	x-y SiSDs (4)	Csl (Tl)	15 k	рСТ
	LLU/UCSC/ CSUSB	2014	x-y SiSDs (4)	Plastic scintillator hybrid telescope	2 M	рСТ
	AQUA	2013	x-y GEMs (2)	Plastic scintillator telescope	1 M	pRad
	PRIMA I	2014	x-y SiSDs (4)	YAG:Ce calorimeter	10 k	рСТ
	PRIMA II	2014	x-y SiSDs (4)	YAG:Ce calorimeter	1 M	рСТ
	INFN	2014	x-y Sci-Fi (4)	x-y Sci-Fi	1 M	рСТ
	NIU/FNAL	2014	x-y Sci-Fi (4)	Plastic scintillator telescope	2 M	рСТ
	Niigata University	2014	x-y SiSDs (4)	Nal (TI) calorimeter	5 k	рСТ
G. Poludniowski et al., Br J Radiol (2015) 88 :20150134	PRaVDA	2015	X-u-v SiSDs	CMOS APS telescope	1 M	рСТ

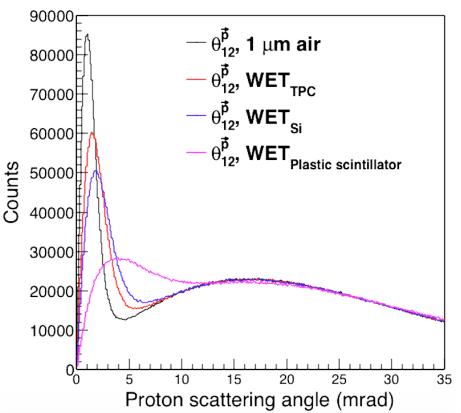
Various PSDs in proton radiography setup

PSDs parameters

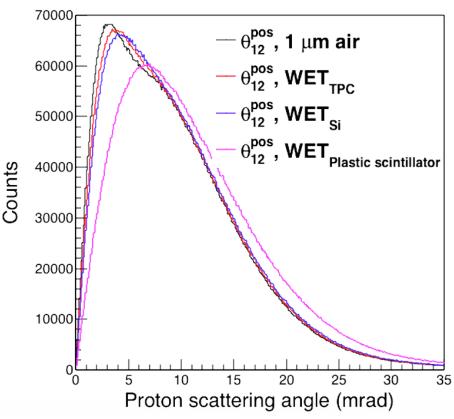
PSD detector type	Number of PSDs	Material	Material thickness (mm)	Material density (g/cm³)	WET (mm)
Ideal	1	Air	0.001	0.0012	-
Plastic scintillator Fiber [1]	2	Bicron BCF12	4.0	1.032	4.106
Silicon strip detector [2]	2	Silicon	0.4	2.33	0.752
Gaseous TPC [3]	1	Isobutene C ₄ H ₁₀	30	0.0025	0.394

^[1] U. Schneider et al., Med Phys 31:5 (2014) 1046-1051

^[2] M. Scaringella et al., JINST 9 (2014) C12009


^[3] A.K. Biegun et al., JINST 11 (2016) C12015

Statistics @ E_p = 150, 190 and 230 MeV



kvi - center for advanced radiation technology

$$\phi_{12}^{\vec{p}}(rad) = \cos^{-1} \frac{\vec{p_1} \vec{p_2}}{|\vec{p_1}||\vec{p_2}|}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

A.K. Biegun et al, under review at Physica Medica: EJMP

Geant4 simulations

Statistics @ E_p = 150, 190 and 230 MeV

kvi - center for advanced radiation technology

$$\phi_{12}^{\vec{p}}(rad) = \cos^{-1} \frac{\vec{p}_1 \vec{p}_2}{|\vec{p}_1|} \qquad \phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

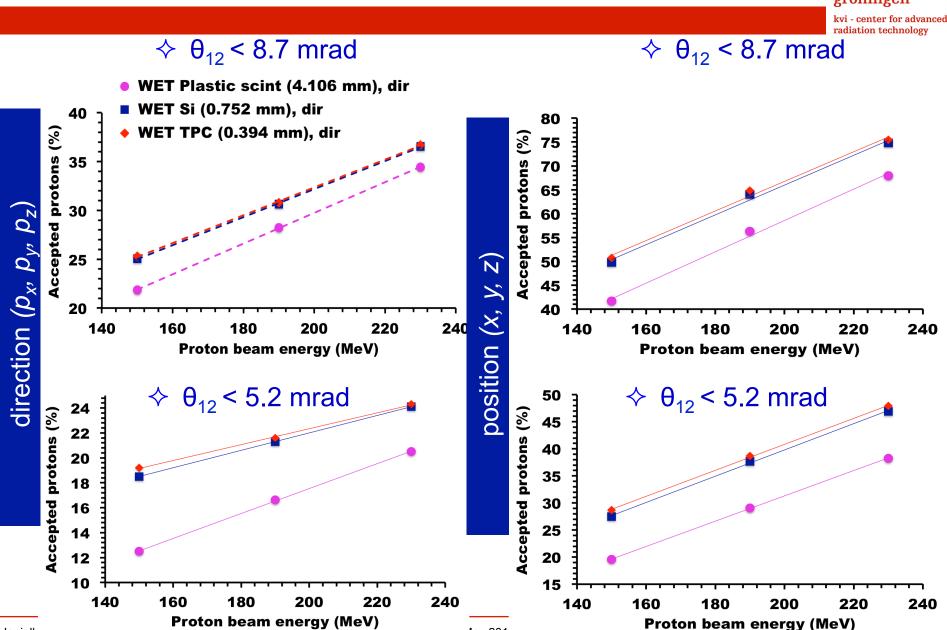
$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$

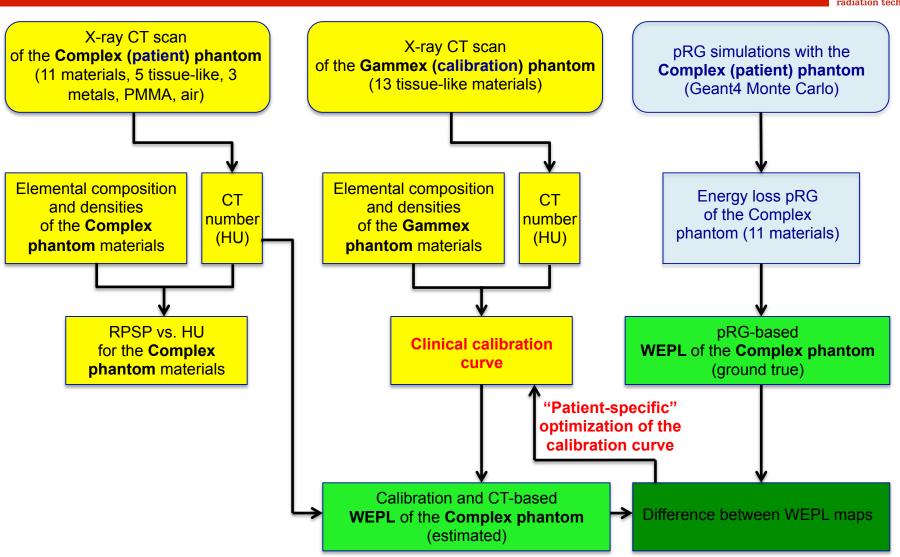
$$\phi_{12}^{pos}(rad) = \tan^{-1} \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{(z_2 - z_1)}$$


A.K. Biegun et al, under review at Physica Medica: EJMP

Geant4 simulations

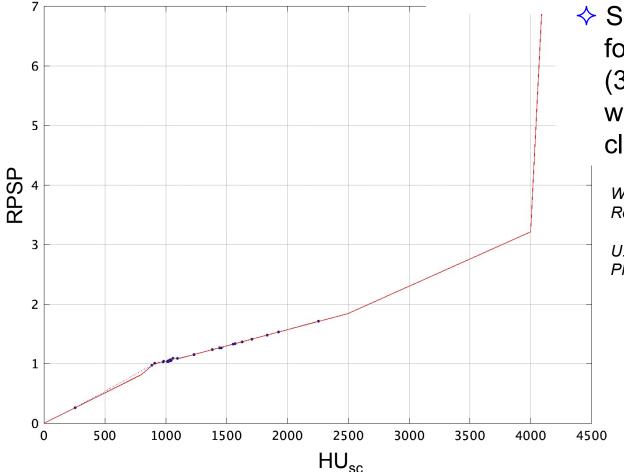
Statistics @ E_p = 150, 190 and 230 MeV

Jagiello



1ay 201

Work flow diagram


kvi - center for advanced radiation technology

Clinical calibration curve (120 kVp)

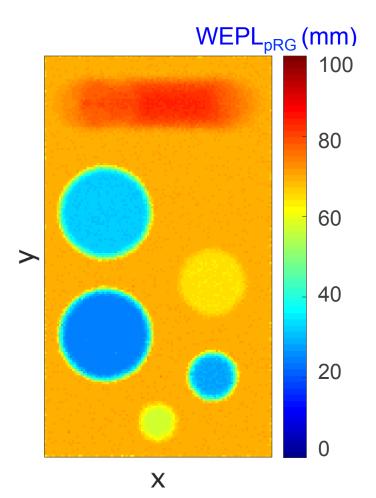
Master thesis: K. Ortega Marin with A.K. Biegun (KVI-CART/RuG July 2016)

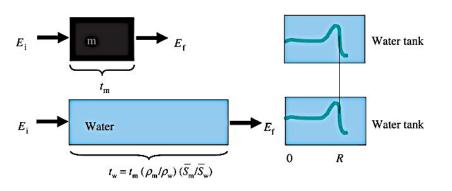
- ♦ Specific for the scanner
- ♦ Stoichiometric method for biological tissues (35 standard human tissues) was used to obtain clinical calibration curve

W. Snyder et al, Report of the Task Group on Reference Man, ICRP publication (1975)

U. Schneider, E. Pedroni, A. Lomax, PMB **41** (1996) 111

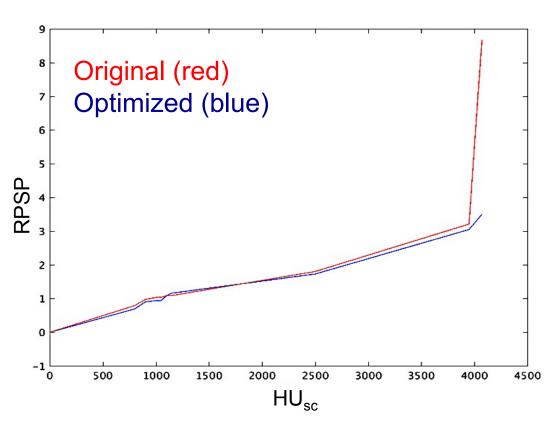
 $HU_{sc} = 1000 * \mu / \mu_{water}$ $HU_{sc} = HU + 1000$


Water Equivalent Path Length (WEPL)


Voxel size: 1 x 1 x 6 mm³

Proton radiography: protons scattered < 5.2 mrad</p>

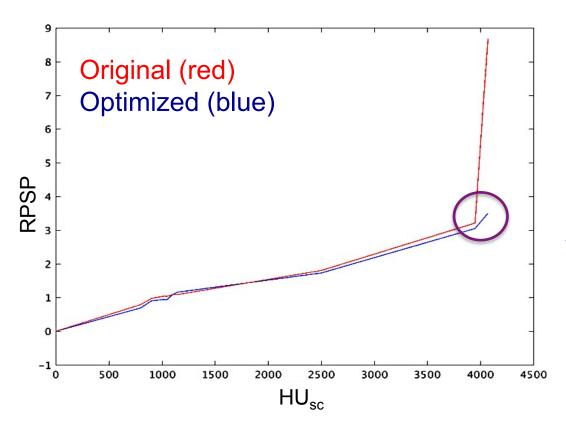
 $WEPL_{pRG} = t_m \times \rho_s = t_m \frac{\rho_m}{\rho_w} \frac{\overline{S}_m}{\overline{S}_w}$


WEPL of material – thickness t_w of water, in which a proton with an energy E_i will stop at the same range as after passing a thickness t_m of the material

Original & optimized clinical calibration curves

Before optimization

Metric	With PMMA	Without PMMA
RMSE	3.59 mm	2.65 mm
χ^2	5083.80	970.65


After optimization

Metric	With PMMA	Without PMMA
RMSE	2.36 mm (-34.33%)	1.38 mm (-48.34%)
χ^2	2287.10 (-55.01%)	260.28 (-73.18)

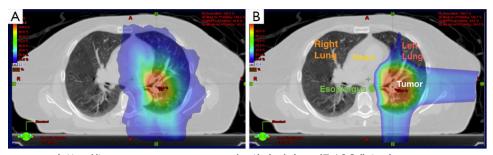
Original & optimized clinical calibration curves

Before optimization

HU saturates for to ~4000 for metals

After optimization

♦ No saturation for metals

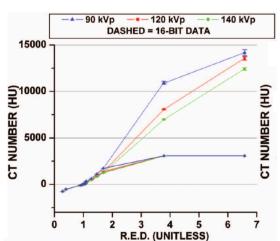


Fast and compact detection system with:

- Spatial and angular resolutions
 - Energy resolutions
- Compatible with reconstruction algorithms

to deliver an accurate map of proton stopping powers of the patient to fully benefit from proton therapy

http://tcr.amegroups.com/article/view/5403/html

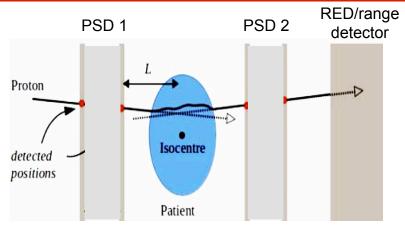

Future work

university of groningen

kvi - center for advanced radiation technology

- Compare proton treatment plan before / after optimization
- Optimization of the clinical calibration curve:
 - further spit of each segments into smaller segments
 - → to account for larger heterogeneities in human tissue
- Include CT/DECT patient data in Geant4 MC pRG simulations
- Validate Geant4 MC simulations with the pRG experimental data

→ Using 16 bit CT scanner
 → to improve HU determinations
 for metals



Glide-Hurst et al, Med Phys 40(6) (2013) 061711

Ideal system with tracking detectors

G. Poludniowski et al., Br J Radiol (2015) 88:20150134

- ✓ Easy to mount on a gantry in proton therapy centers
- ✓ Scan time + reconstruction in a clinic of up to 10 s

All to be clinically acceptable!

√ Tracking detectors

- •Low Z and WET → minimum MCS in a detector
- •Fast → high count rate (> MHz), based on Timepix3, time resolution ~ns
- •Spatial resolution → 50 µm
- Full proton track determination
- •Modular → ultimate size 30x30 cm²

✓ Residual energy detector

- •Fast scintillator (YAG:Ce, LaBr₃) → good energy resolution of up to 1%
- Fast → high count rate (> MHz)

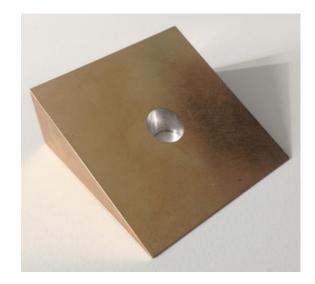
Proton radiography: The ultimate aim

Detection system:

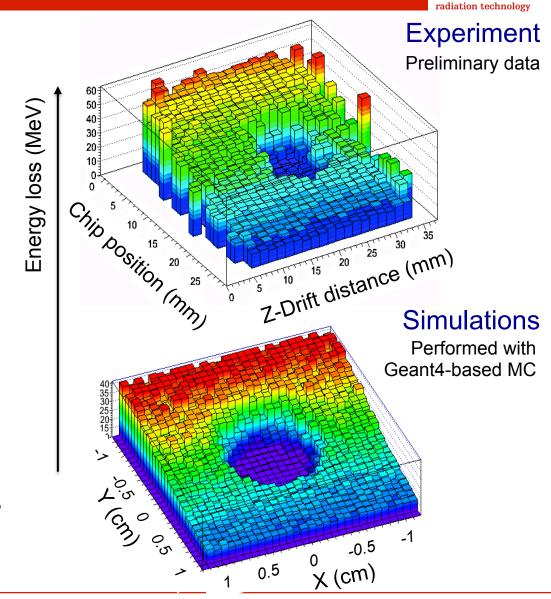
Position detectors:

- (1) Improved data acquisition for Timepix3 (fast & compact) → MHz rate
- Increase the size of the detectors (sufficient in clinics) \rightarrow 100 x 100 mm²
- (4) 3D information of the proton tract with a good position resolution (good angle reconstruction) → 50 µm

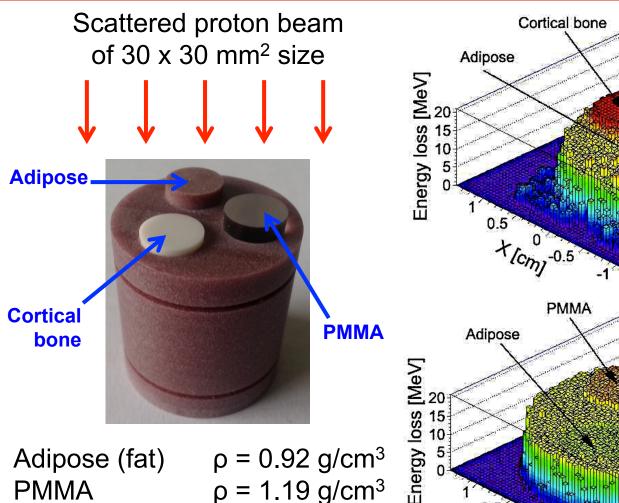
Energy:

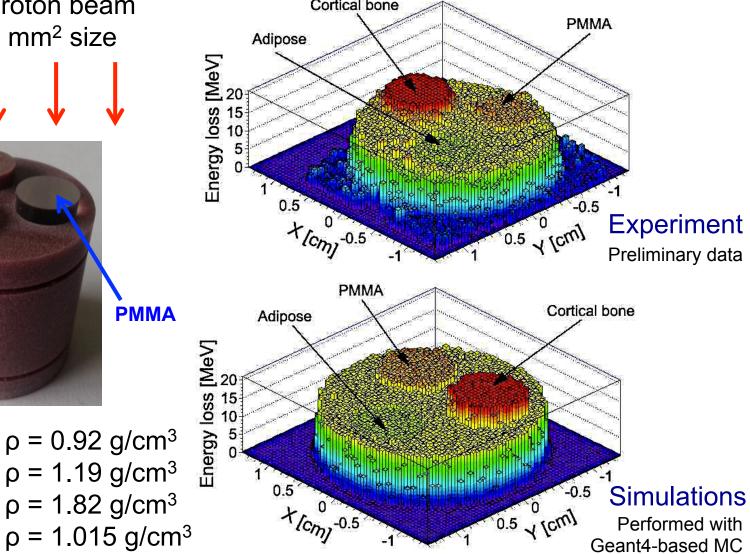

- (1) Fast energy detector → MHz rate
- (2) Energy resolution $\rightarrow \leq 1\%$

Reconstruction of imaged object: trapezoid



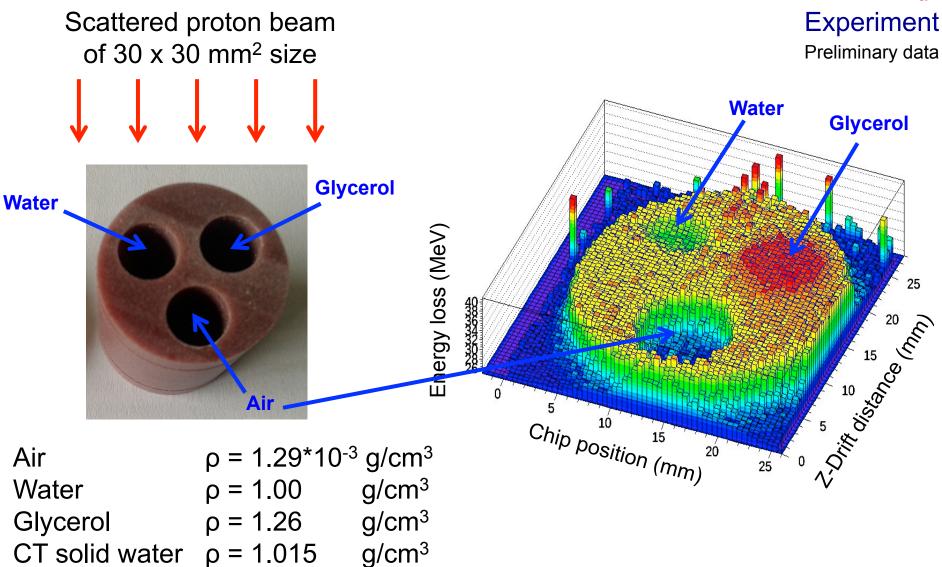
Scattered proton beam of 30 x 30 mm² size




Brass trapezoid $\rho = 8.55 \text{ g/cm}^3$ $\rho = 1.18 \text{ g/cm}^3$ Polymer

Reconstruction of object with tissue-like inserts

Cortical bone

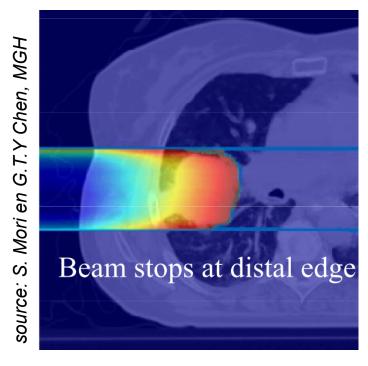

CT solid water

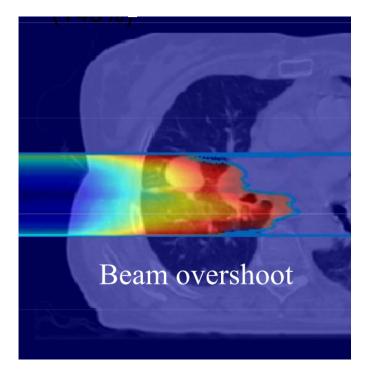
 $\rho = 1.82 \text{ g/cm}^3$

Reconstruction of object with air and liquid inserts

kvi - center for advanced radiation technology

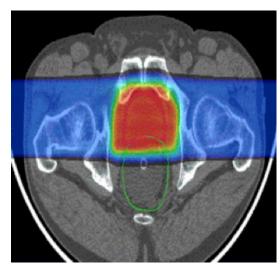
The AGOR cyclotron


- Superconducting magnet (up to 4.1 T)
- **Protons up to 190 MeV**
- Alpha particles, ¹²C up to 90 MeV/u
- Heavy ions: 600 (q/A)² MeV/u



Tumor modification during treatment: an example

before treatment

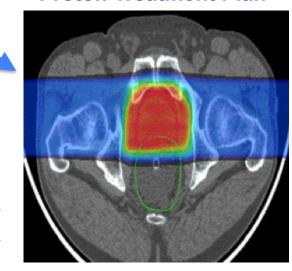


after 5 weeks

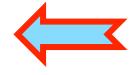

Future proton therapy work flow

Proton Treatment Plan

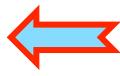
Scan of a patient immediately before treatment


* Proton radiography/CT

Directly measured 3D map of proton stopping powers


Online treatment plan adaptation

- * Accurate (< 1%)
- * Fast (1-10 sec)


Updated Proton Treatment Plan

Treatment verification

Treatment

