

2<sup>nd</sup> Jagiellonian Symposium June 8<sup>th</sup> 2017, Krakow

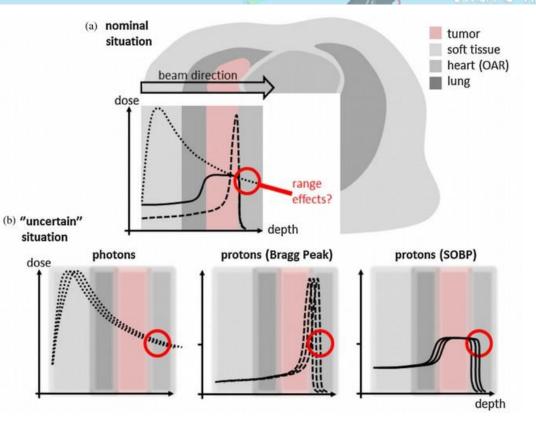


# Next generation imaging for ion beam therapy treatment planning

### Guillaume Landry, George Dedes, Katia Parodi

Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, DE



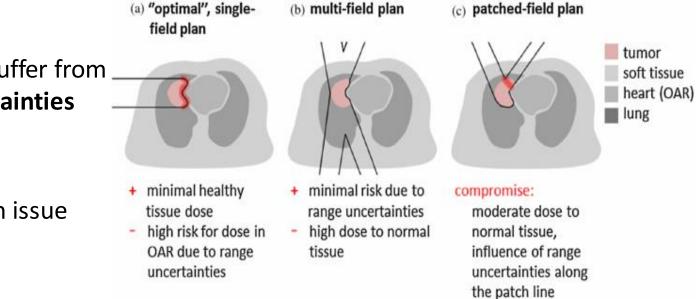

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN



- Motivation for DECT in proton therapy
- Stopping power and range in proton therapy treatment planning
- Tissue determination in proton therapy



- Protons and ions are more conformal
- However, they suffer from different uncertainties than photons
- Robustness is an issue




Knopf and Lomax Phys Med Biol 58 (2013) R131





- Protons and ions are more conformal
- However, they suffer from different uncertainties than photons
- Robustness is an issue



Knopf and Lomax Phys Med Biol 58 (2013) R131

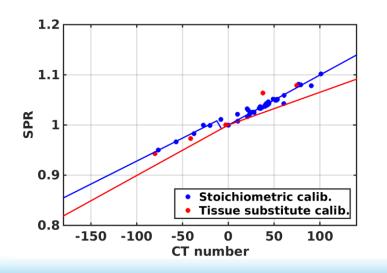




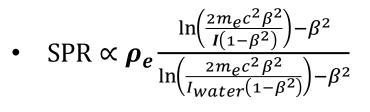
 X-ray CT measures photon attenuation coefficient

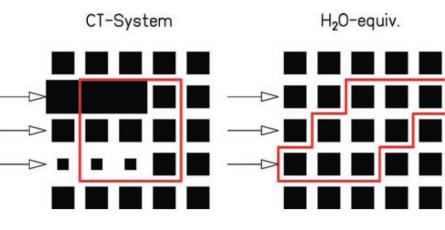
 $CT \# = \frac{\mu - \mu_{water}}{\mu_{water}} \cdot 1000$ 

•  $\mu \propto C_{\text{Compton}}(E) \rho_e + C_{\text{PE}}(E) Z^3$ 







 X-ray CT measures photon attenuation coefficient


$$CT \# = \frac{\mu - \mu_{water}}{\mu_{water}} \cdot 1000$$

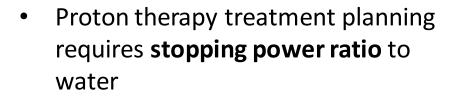
•  $\mu \propto C_{\text{Compton}}(E) \rho_e + C_{\text{PE}}(E) Z^3$ 



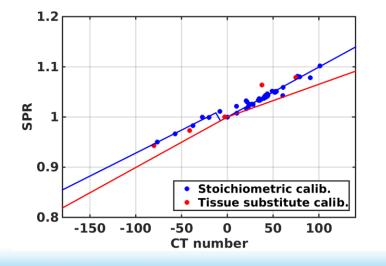
Proton therapy treatment planning requires stopping power ratio to water











 X-ray CT measures photon attenuation coefficient

 $CT \# = \frac{\mu - \mu_{water}}{\mu_{water}} \cdot 1000$ 

•  $\mu \propto C_{\text{Compton}}(E) \rho_e + C_{\text{PE}}(E) Z^3$ 



• SPR 
$$\propto \rho_e \frac{\ln\left(\frac{2m_e c^2 \beta^2}{I(1-\beta^2)}\right) - \beta^2}{\ln\left(\frac{2m_e c^2 \beta^2}{I_{water}(1-\beta^2)}\right) - \beta^2}$$



SPR uncertainty from single energy CT (SECT) conversion is often stated as3.5% (95<sup>th</sup> percentile)

Yang et al. Med Phys 57 (2012) 4095





### $\mu \propto C_{\text{Compton}}(E) \boldsymbol{\rho}_{\boldsymbol{e}} + C_{\text{PE}}(E) \boldsymbol{Z}^{3}$

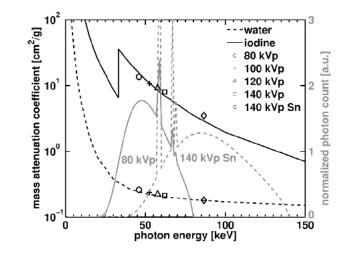
#### 2 equations, 2 unknowns



http://www.healthcare.siemens.com/computed-tomography/dual-source-ct/somatom-force/technical-specifications






 $\mu \propto C_{\text{Compton}}(E)\boldsymbol{\rho}_{e} + C_{\text{PE}}(E)\boldsymbol{Z}^{3}$ 

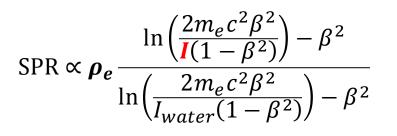
#### 2 equations, 2 unknowns

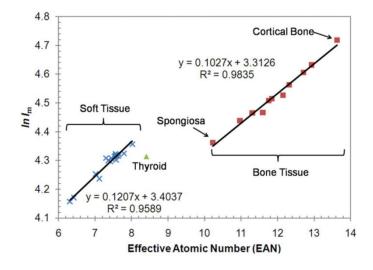


• Dual energy CT allows to solve for  $ho_e$  and  $Z_{
m eff}$ 

#### Bazalova et al. Phys Med Biol 53 (2008) 2439




Van Elmpt, Landry et al. Radiother Oncol 119 (2016) 137


http://www.healthcare.siemens.com/computed-tomography/dual-source-ct/somatom-force/technical-specifications

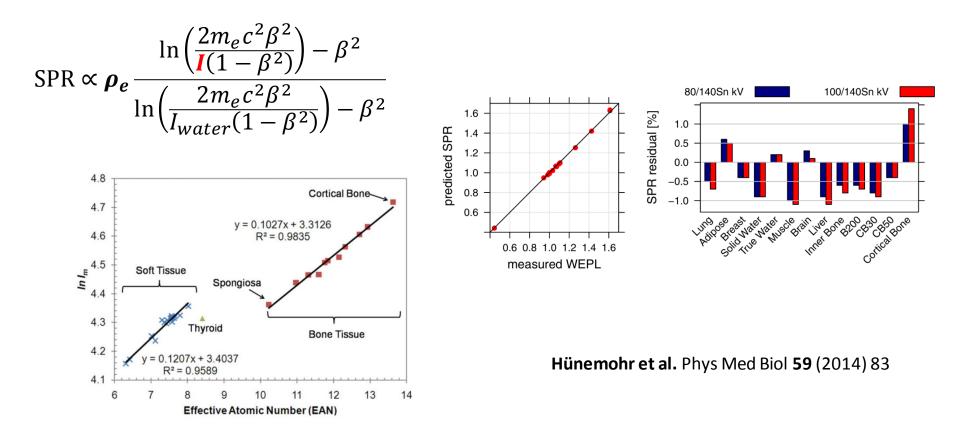




### Theory






Yang et al. Phys Med Biol 55 (2010) 1343

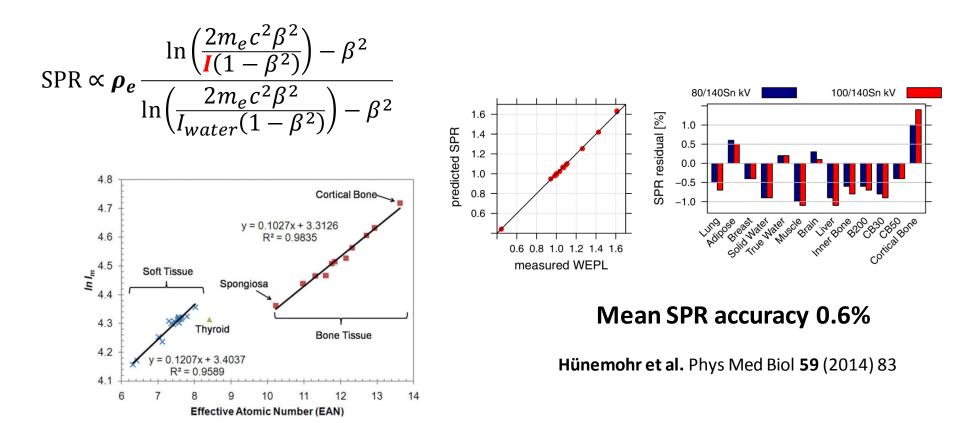




Theory

**Experiment** 




Yang et al. Phys Med Biol 55 (2010) 1343





Theory

**Experiment** 



Yang et al. Phys Med Biol 55 (2010) 1343



LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN





- Stopping power and range in proton therapy treatment planning
- Tissue determination in proton therapy





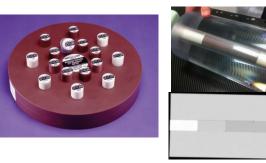
### Scanner

 SOMATOM Force Klinikum Grosshadern



- 90 kVp and 150 kVp/Sn
  - Including merged 120 kVp equivalent
  - ADMIRE recon
  - CTDI<sub>vol</sub> 20 mGy

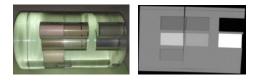



### Scanner

### Phantoms

 SOMATOM Force Klinikum Grosshadern




Calibration phantom



17 Gammex inserts

- 90 kVp and 150 kVp/Sn
  - Including merged 120 kVp equivalent
  - ADMIRE recon
  - CTDI<sub>vol</sub> 20 mGy

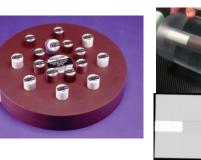
**Evaluation phantom** 



7 CIRS inserts



### Scanner


### Phantoms

### Patients

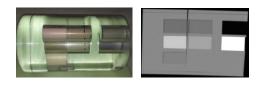
 SOMATOM Force Klinikum Grosshadern




Calibration phantom



17 Gammex inserts


5 trauma patients

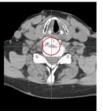


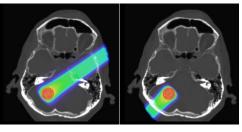
Head and neck scans

- 90 kVp and 150 kVp/Sn
  - Including merged 120 kVp equivalent
  - ADMIRE recon
  - CTDI<sub>vol</sub> 20 mGy

**Evaluation phantom** 



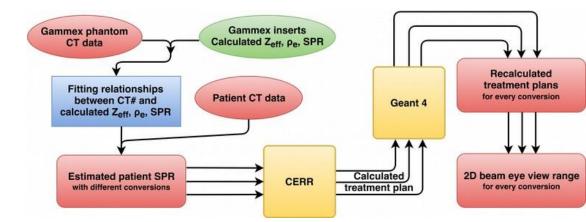

#### 7 CIRS inserts


- Merged image used for clinical routine
- Virtual tumors delineated by RO



- DECT based treatment plans
  - Research TPS with pencil beam algorithm
- Simulated brain tumors

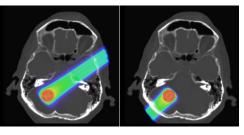








For brain tumors a **long** and **short range** plan was made

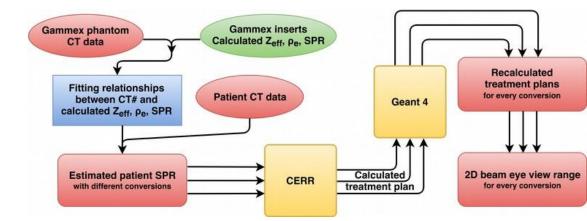



- DECT based treatment plans
  - Research TPS with pencil beam algorithm
- Simulated brain tumors

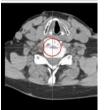


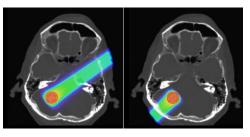







For brain tumors a **long** and **short range** plan was made


#### Hudobivnik MSc Thesis LMU 2015




- DECT based treatment plans
  - Research TPS with pencil beam algorithm
- Simulated brain tumors

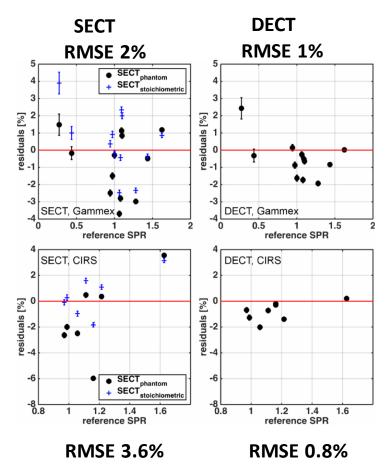


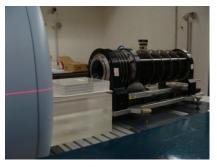






For brain tumors a **long** and **short range** plan was made


- DECT and SECT treatment plans were compared for relative range differences
- We used a Monte Carlo recalculation tool with a single evaluation geometry for all plans of a patient



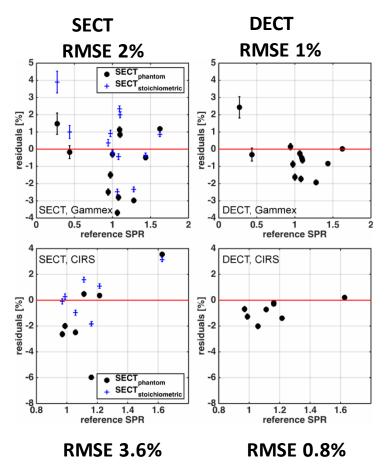

Results

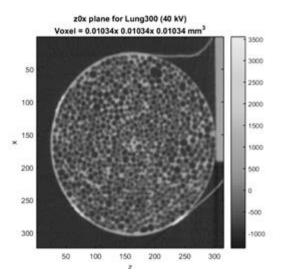


### Phantoms






Reference SPR measured @ HIT


Hudobivnik,...,Landry. Med Phys 43 (2016) 495



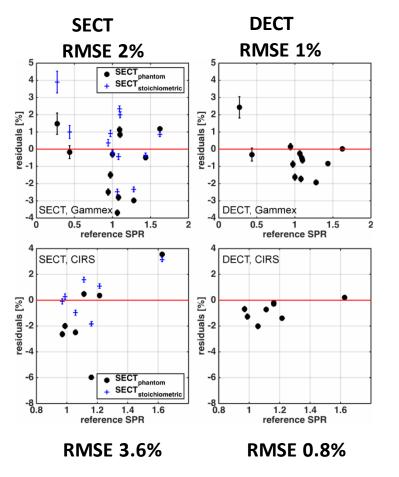
Results

### Phantoms



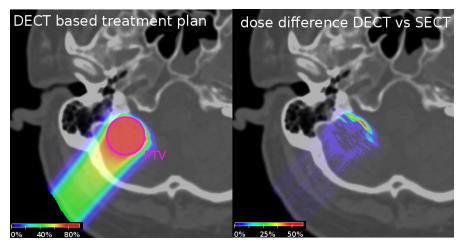


#### Lung insert @ small animal CBCT Courtesy L. Schyns and I. Almeida, MAASTRO clinic

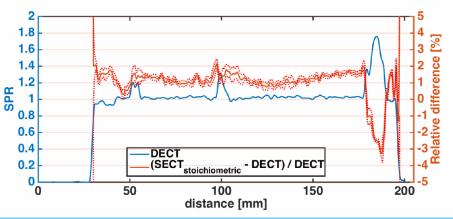

#### Hudobivnik,...,Landry. Med Phys 43 (2016) 495



Results




### Phantoms

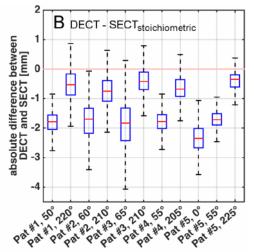


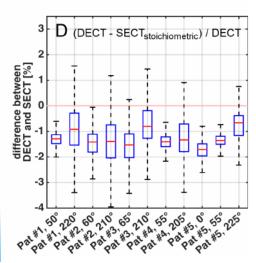

#### Hudobivnik,...,Landry. Med Phys 43 (2016) 495

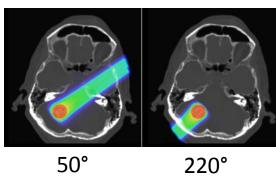
### Patients



Van Elmpt, Landry et al. Radiother Oncol 119 20016 137





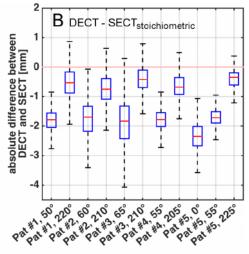

### brain tumors range differences

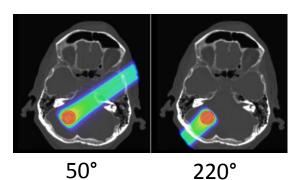






50°


Up to **2 mm** ۲ median shift


Hudobivnik,...,Landry. Med Phys 43 (2016) 495





### brain tumors range differences



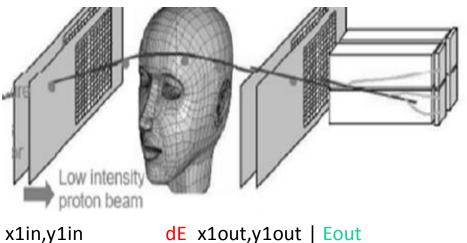


Range differences between SECT and DECT of 1.5% consistent with RMSE error levels (2-3.5% vs 1%)

- Up to 2 mm median shift
  - Corresponds to about **1.5%** of the **range**
- CT image axial **pixels size 0.4 mm**





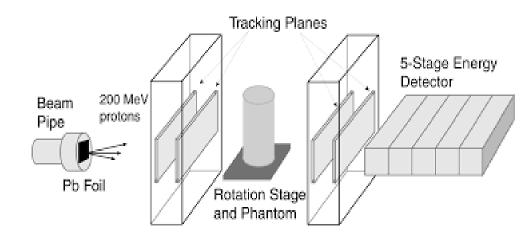



- Is proton CT a superior alternative to DECT?
- Tissue determination in proton therapy





- Assuming that the initial energy is well known, we need:
  - Position measurement at the entrance/exit
  - Direction measurement at the entrance/exit -> a second position measurement
  - Energy loss or residual energy or residual range measurement at the exit




x2in,y2in

dE x1out,y1out | Eout x2out,y2out



- Assuming that the initial energy is well known, we need:
  - Position measurement at the entrance/exit
  - Direction measurement at the entrance/exit -> a second position measurement
  - Energy loss or residual energy or residual range measurement at the exit



LLU pCT scanner prototype [H.F.-W. Sadrozinski et al. NIM A 831 394-399 (2016)]





- Assuming that the initial energy is well known, we need:
  - Position measurement at the entrance/exit
  - Direction measurement at the entrance/exit -> a second position measurement
  - Energy loss or residual energy or residual range measurement at the exit
  - Single proton tracking!



LLU pCT scanner prototype [H.F.-W. Sadrozinski et al. NIM A 831 394-399 (2016)]





- Assuming that the initial energy is well known, we need:
  - Position measurement at the entrance/exit
  - Direction measurement at the entrance/exit -> a second position measurement
  - Energy loss or residual energy or residual range measurement at the exit



LLU pCT scanner prototype [H.F.-W. Sadrozinski et al. NIM A 831 394-399 (2016)]

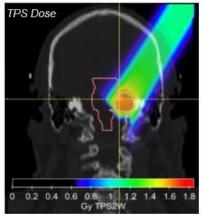
• The most advanced proton CT scanner prototype (Phase II preclinical prototype) built and operated by the pCT collaboration (USA).

LMU Dept Med Phys became a partner last year.

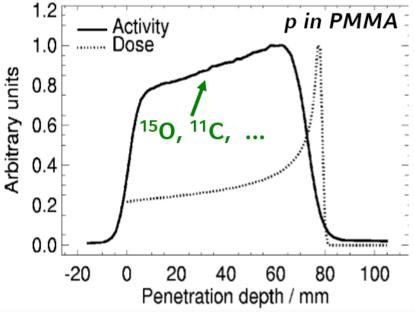


LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

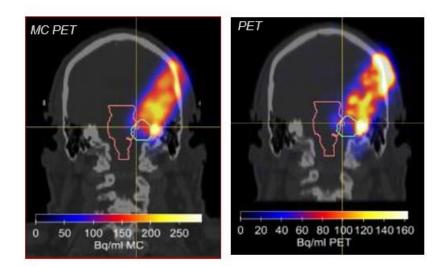





- Stopping power and range in proton therapy treatment planning
- Tissue determination in proton therapy







### PET activity indicates proton dose delivery

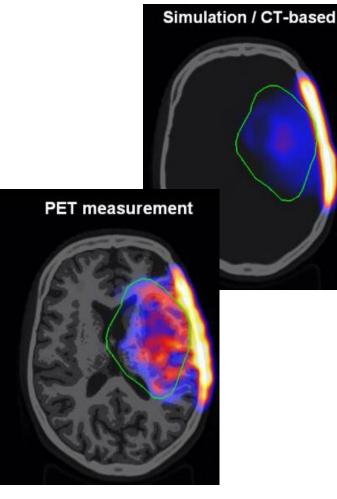


Proton dose distribution from TPS



- Activity profile for protons does not follow the Bragg peak as nicely as for Carbon ions (projectile fragmentation)
- Measured PET activity can be compared to MC prediction




Courtesy of J. Bauer

#### Parodi et al. IEEE TNS 2005



### Positron emission yield simulations





Courtesy of J. Bauer

Uncertainties in MC simulation and discrepancies to measurements due to underlying CT# to tissue composition conversion

> **Carbon fraction:** White matter: 19.4% Grey matter: 9.5% CSF: 0%

No accurate distinction between brain matter with currently available SECT decomposition method

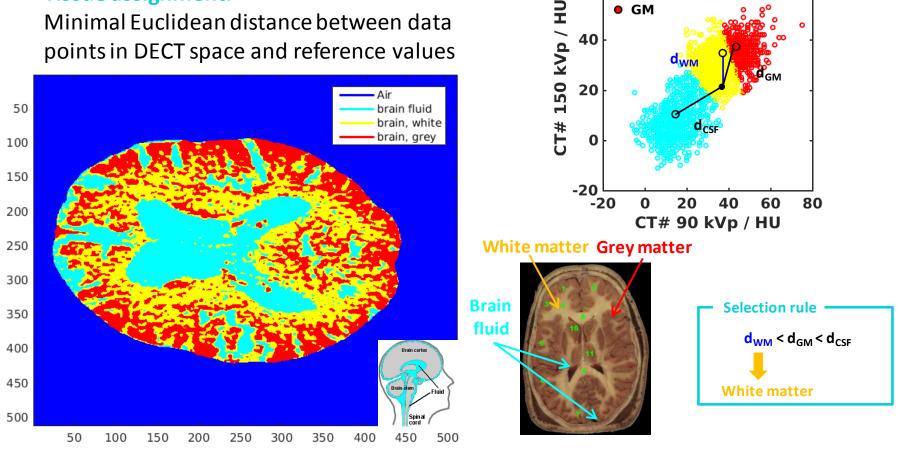
Use of **DECT data** for a different tissue segmentation approach



### **Euclidean distance approach** for brain tissue segmentation

• CSF

o wm

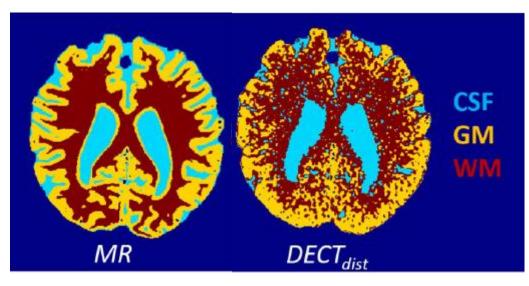

• GM

60

40

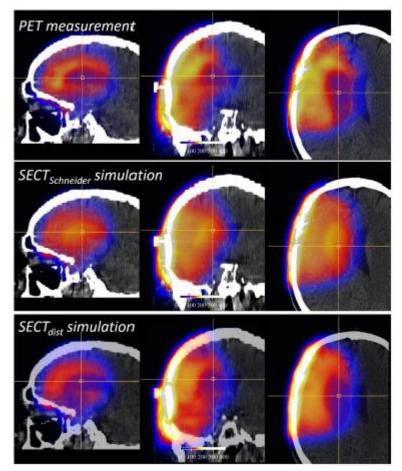
#### **Tissue assignment:**

Minimal Euclidean distance between data points in DECT space and reference values




Berndt B, Landry G,..., Phys Med Biol 62 (2017) 2427




## Validation of segmentation II - MR segmentation -

### **T1 MRI segmentation vs. DECT**



Largest impact is proper assignation of CSF

### **Impact on PET measurements**

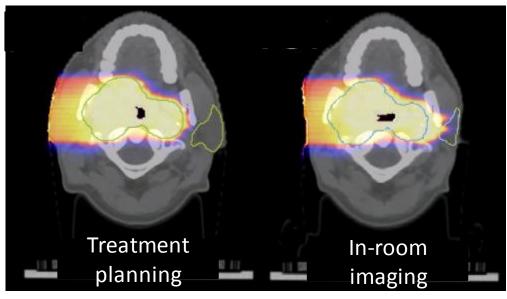


Berndt B, Landry G, ..., Phys Med Biol 62 (2017) 2427



# Conclusion

### **Conclusion 1**


- The SPR accuracy of DECT is superior to SECT
  - 1% vs 3.5%
- This **accuracy** is probably at the **level we need**
- This should be sufficient to warrant clinical implementation



# Conclusion

### **Conclusion 1**

- The SPR accuracy of DECT is superior to SECT
  - 1% vs 3.5%
- This accuracy is probably at the level we need
- This should be sufficient to warrant clinical implementation



G. Landry et al. Med Phys 42 (2015) 1354

• **pCT:** in room imaging



# Conclusion

### **Conclusion 1**

- The SPR accuracy of DECT is superior to SECT
  - 1% vs 3.5%
- This **accuracy** is probably at the **level we need**
- This should be sufficient to warrant clinical implementation

### **Conclusion 2**

- For specific applications
   DECT tissue segmentation
   may be beneficial
- **PET** range verification example
- Prompt gamma?



# Acknowledgement

- Many thanks to
- Faculty of Physics, LMU Munich
  - Bianca Berndt
  - Nace Hudobivnik
- Siemens CT imaging:
  - Dr. Bernhard Schmidt
- LMU Radiology
  - Prof. Dr. Thorsten Johnson (formerly)
  - Prof. W. Sommer
  - Dr. F. Schwarz
- HIT and colleagues for SPR measurement
  - Thomas Tessonier (formerly LMU/HIT)
  - Chiara Gianoli (LMU)
  - Sebastian Meyer (LMU)
  - Lorena Magallanes (LMU/HIT)
  - Julia Bauer (HIT)
- CIRS insert composition
  - Vladimir Varchena (CIRS)

- MAASTRO clinic, Maastricht:
  - Prof. Frank Verhaegen
  - Isabel Almeida
- TUM Munich for research TPS
  - Prof. J Wilkens (TUM Munich)
  - Dr. Florian Kamp (LMU, formerly TUM)
- pCT collaboration
  - Prof. R. Schulte (Loma Linda U)
  - Prof. R. Johnson
- pCT reconstruction
  - Dr. Simon Rit (CREATIS Lyon)
  - Dr. David Hansen (Aarhus University)
- LMU Radiotherapy
  - Prof. C. Belka
  - Dr. C. Thieke