UNDERWATER DETECTION OF DANGEROUS SUBSTANCES: THE SABAT PROJECT

M. Silarski Jagiellonian University on behalf of the SABAT collaboration

- Introduction
- Neutron Activation Techniques
- Application in the underwater environment
- Status of the project
- Summary

2nd Jagiellonian Symposium of Fundamental and Applied Subatomic Physics, Kraków, 09.06. 2017

Introduction

- "Ghosts" of World Wars: ~250 kt of munition (including 65 kt of chemical agents) sunk in the Baltic Sea
- Main known contaminated areas: Little Belt, Bornholm Deep (east of Bornholm) and the southwestern part of the Gotland Deep
- Unknown amount of chemical leftovers are spread around the Baltic Sea
- Serious threat for people and environment
 - ✤ "Fake amber" on the coast
 - Mustard gas "fished" out the sea
 - Menace to navy
 - Genetic mutations of marine fauna

http://www.sfora.pl/polska/Napalm-w-Baltyku-Przed-katastrofa-nie-ma-ratunku-a52539

V. Valkovic et al. 'Surveyor': An Underwater System for Threat Material Detection. International Atomic Energy Agency (IAEA): IAEA (2010).

Introduction

V. Valkovic et al. 'Surveyor': An Underwater System for Threat Material Detection. International Atomic Energy Agency (IAEA): IAEA (2010).

Introduction

 $TNT (C_7H_5N_3O_6)$

- Presently used detection methods:
 - Sonars (shape and localization) + diver/robot inspection (evaluation of the ammunition shell and type)
 - ✤ "By chance": during fishing, etc.
- High economic and environmental costs have been preventing so far any activities aiming at extraction of these hazardous substances.

Neutron Activation Techniques

Novel methods of nondestructive chemical threat detection based on neutron activation:

Thermal neutron capture (sources, D+Dgenerators)

Neutron inelastic scattering (D+D/**D+T** generator)

Excited nuclei emit gamma quanta of energy characteristic of the element

Relative content of elements \Leftrightarrow Stoichiometry

Neutron Activation Techniques

✤ Signature:

gamma quanta of the following nuclei: ¹²C (4.44 MeV), ¹⁶O (6.13 MeV), ¹⁴N (10.83 MeV, 5.27 MeV), ³⁷Cl (1.17 MeV, 7.79 MeV) ³²S (5.42 MeV) ³¹P (1.27 MeV), ¹⁹F (0.11 MeV, 0.197 MeV)

- High penetration allows detection of explosives/ which are hidden in vehicles, buried, etc.
- The use of pulse generators and detection of correlated α particles allows to measure the neutron time of flight ⇔ tomographical picture of the chemical composition of the substance

Drawbacks:

- Small cross sections for some of the elements
- Decreased mobility due to detector cooling
- High neutron flux needed
- Insensitivity to the structure of molecule
- High neutron attenuation in water
- High background from oxygen and nitrogen

Neutron Activation Techniques

Comparison with database of known substances & identification

Practical applications

Practical applications

V. Valkovic et al. 'Surveyor': An Underwater System for Threat Material Detection. International Atomic Energy Agency (IAEA): IAEA (2010).

http://www.uncoss-project.org/

The SABAT project (Stochiometry Analysis By Activation Techniques)

- The 14.1 MeV neutron generator with α particle detection
- Neutron and γ quanta attenuation in water minimized by guides filled with air or some other gas
- Changeable position, length and orientation of guides
- Position sensitive detector (scintillator)
- Depth of neutron interaction determined from the time difference between neutron and γ quantum registration times:

$$x = \left(\Delta t + \frac{l_{\alpha}}{v_{\alpha}} - \frac{l_{n}}{v_{n}} - \frac{l_{\gamma}}{c}\right) \frac{cv_{n}\cos\varphi}{c\cos\varphi + v_{n}}$$

- Mobility and compactness requires substitution of semiconductor detectors
- Natural candidates: inorganic scintillators:

	BGO	Nal:TI	LaCl ₃ :Ce	LaBr ₃ Ce
Average Z	28	32	28	41
	7.1	3.7	3.9	5.3
Energy resolution (@662 keV) [%]	12	7	3.3	2.8

IEEE Nuclear Science Symposium, San Diego, CA, 10/29/2006, 11/04/2006

C. Elon et al..NIMA 619 (2010) 234-239

- Simulations with MCNPX, so far without alpha tagging and TOF measurement, 3·10⁷ neutrons (< 0.3 s of interrogation)</p>
- NaI:Tl 3" x 3"x3" detector with 5 cm led shield inside a "drone" with dimensions 192 x 192 x 70 cm³ filled with air.
- Neutron generator at the lower face of the carrier connected to a guide with cross-section of 20x20 cm².
- ✤ 100 x 100 x 40 cm³ container with mustard gas

- Simulations with MCNPX, so far without alpha tagging and TOF measurement, 3·10⁷ neutrons (< 0.3 s of interrogation)</p>
- NaI:Tl 3" x 3"x3" detector with 5 cm led shield inside a "drone" with dimensions 192 x 192 x 70 cm³ filled with air.
- Neutron generator at the lower face of the carrier connected to a guide with cross-section of 20x20 cm².
- ✤ 100 x 100 x 40 cm³ container with mustard gas

Playing with neutron shielding (polyethylen + led)

7,42

8,58

Cl

С

2,22 3,00

SABAT Monte Carlo simulations

- Fast independent simulations devoted only to the NAA applications
- Open source code (C++ as default programming language, standard version C++11)
- Target OS: Linux (Debian or Red Hat based)
- Multiple cores/threads (Open MPI standard & library)
- Parallel computing
- Physics: ENDF/ENSDF libraries used
- Database : SQLite3
- Relational DataBase Management System, most tables in the second normal or third normal form (2NF & 3NF)
- Novel method of geometry definition and particle tracking based on hypergraphs

Summary

- The chemical munitions sunk in seas constitute a very serious threat for environment and people
- Methods of detection used so far are not efficient enough to detect all contaminated sea areas
- Promising improvement: neutron activation techniques used on a submarine
- Sensitivity limited by huge background from water
- We expect great noise reduction requiring the coincident detection of the *α* particle generated together with neutron and taking into account the Time Of Flight measurement
- Design of the prototype of such device was started in the Institute of Physics of the Jagiellonian University
- The SABAT project was founded by NCBR in January 2017
- Construction of the first prototype scheldued for 2019

Goya, Witches sabbath

Thank You for attention

Other potentially useful information Neutron absorption [MT=27; sum of MT=18 and MT=102 through MT=117] Neutron disappearance [MT=101; sum of MT=102-117]

 $n+A \rightarrow T + n + A'$ [MT=33] $n+A \rightarrow {}^{3}He + n + A'$ [MT=34] $n+A \rightarrow 2\alpha + A'$ [MT=108] $n+A \rightarrow 2p + A'$ [MT=111] $n+A \rightarrow \alpha + p + A'$ [MT=112] $n+A \rightarrow d + p + A'$ [MT=115] $n+A \rightarrow T + p + A'$ [MT=116] $n+A \rightarrow \alpha + d + A'$ [MT=117] $n+A \rightarrow 3n + A'$ [MT=17] $n+A \rightarrow n + 2\alpha + A'$ [MT=29] $n+A \rightarrow 2n + p + A'$ [MT=41] $n+A \rightarrow n + 2p + A'$ [MT=44] $n+A \rightarrow p + \alpha + n + A'$ [MT=45] $n+A \rightarrow T + 2\alpha + A'$ [MT=113] $n+A \rightarrow 4n + A'$ [MT=37] $n+A \rightarrow 3n + p + A'$ [MT=42] $n+A \rightarrow n + 3\alpha + A'$ [MT=28]

 $n+A \rightarrow 3n + \alpha + A'$ [MT=25] particle directions and energies have to be generated according to the phace space for M=1...4 particles in the final state (e.g. GENBOD)

<u>final state</u>