

KLOE-2 Inner Tracker: the First Cylindrical GEM Detector

E. De Lucia LNF- INFN for the KLOE-2 Collaboration

DAONE & KLOE

• DA ϕ NE Frascati ϕ -factory: an e⁺e⁻ collider @ √s =1019.4 MeV = M_{ϕ} Best performance in 2005:

- $L_{peak} = 1.4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- ∫ Ldt = 8.5 pb⁻¹/day

Presently new crab-waist sextuples configuration

• KLOE has acquired 2.5 fb⁻¹ @ $\sqrt{s=M_{\phi}}$ (2001-05) + 250 pb⁻¹ off-peak @ $\sqrt{s=1}$ GeV

Precision Kaon and Hadron Physics with KLOE [Rivista del Nuovo Cimento Vol.31, N.10 (2008)]

• Upgraded detector KLOE-2 Run started in November 2014: goal at least 5 fb⁻¹ more

KLOE-2 at DA ϕ NE

- Calorimeter System \odot
 - \oplus EMC Lead / Scintillating σt = 54 ps /√E(GeV) \oplus 140 ps Fibers w PMT

 $\sigma E/E = 5.7\% / \sqrt{E(GeV)}$ $\sigma vtx(\gamma \gamma) \sim 1.5 \text{ cm} (vertex reso)$

- **Tracking System** \oplus DC – He-Iso 90-10 3.7m x 4m Drift Chamber
- Superconductive Magnet \bigcirc + 0.52 T solenoidal field
- DAFNE *p*-factory
 - $\oplus e^+e^-at 1020 MeV$

 $\sigma p/p = 0.4 \% (\theta track > 45^\circ)$ ohit = $150 \,\mu m \,(xy), 2 \,mm \,(z)$ overtex ~3 mm

KLOE-2 at DA ϕ NE

- Calorimeter System \odot
 - \oplus EMC Lead / Scintillating σt = 54 ps /√E(GeV) \oplus 140 ps Fibers w PMT

 $\sigma E/E = 5.7\% / \sqrt{E(GeV)}$ $\sigma vtx(\gamma \gamma) \sim 1.5 \text{ cm} (vertex reso)$

- **Tracking System** + DC - He-Iso 90-10 3.7m x 4m Drift Chamber
- Superconductive Magnet \bigcirc + 0.52 T solenoidal field
- DAFNE *p*-factory
 - $\oplus e^+e^-at 1020 MeV$

 $\sigma p/p = 0.4 \% (\theta track > 45^{\circ})$ ohit = $150 \mu m (xy)$, 2 m m (z)overtex ~3 mm

KLOE-2 at DA ϕ NE

- Calorimeter System 0
 - \oplus EMC Lead / Scintillating σt = 54 ps /√E(GeV) \oplus 140 ps Fibers w PMT

 $\sigma E/E = 5.7\% / \sqrt{E(GeV)}$ $\sigma vtx(\gamma \gamma) \sim 1.5 \text{ cm} (vertex reso)$

- Superconductive Magnet \bigcirc + 0.52 T solenoidal field
- DAFNE ϕ -factory
 - $\oplus e^+e^-at 1020 MeV$

 $\sigma p/p = 0.4 \% (\theta track > 45^\circ)$ ohit = $150 \,\mu m \,(xy), 2 \,mm \,(z)$ overtex ~3 mm

KLOE-2 at DAONE

- Calorimeter System \bigcirc
 - PMT Barrel and Endcaps
 - CCALT LYSO Crystal w SiPM -Low-beta
 - QCALT Tungsten / Scintillating Tiles w SiPM - Quadrupole Instrumentation
 - LET / LYSO+SiPMs
 - HET / Scint+PMTs
- **Tracking System** \bigcirc DC - He-Iso 90-10 3.7m x 4m Drift Chamber Inner Tracker - 4 Cylindrical GEM detectors
- Superconductive Magnet \bigcirc
 - 0.52 T solenoidal field
- DAFNE ϕ -factory \bigcirc
 - $\oplus e^+e^-$ at 1020 MeV

- Physics program [EPJC 68 (2010)] 0
 - Ks, η , η_8 rare decays
 - Quantum Interferometry
 - Dark photon search

(A. Di Domenico A. Gajos Satellite meeting)

 \mathbf{c}

The GEM is a 50 μm thick copper- coated kapton foil, with high density of holes
 (70 μm Ø, 140 μm pitch) manufactured with standard photo-lithographic technology
 [F. Sauli, NIM A386 (1997) 531]

By applying a difference of potential (400-500 V) between the two copper sides, in presence of external **Drift** and **Collection** fields, an electric field as high as ~100 kV/cm is produced into the **Holes** acting as **Multiplication Stages** for ionization electrons released in the drift gas gap

- Gains up to 1000 can be easily reached with a single GEM foil
- Itigher gains (and/or safer working conditions) are usually obtained by cascading two or three GEM foils

- Gains up to 1000 can be easily reached with a single GEM foil
- Itigher gains (and/or safer working conditions) are usually obtained by cascading two or three GEM foils

- Gains up to 1000 can be easily reached with a single GEM foil
- Itigher gains (and/or safer working conditions) are usually obtained by cascading two or three GEM foils

- Gains up to 1000 can be easily reached with a single GEM foil
- Itigher gains (and/or safer working conditions) are usually obtained by cascading two or three GEM foils

Cylindrical GEM Inner Tracker

- ◎ Improve vertex reconstruction at IP
- First batch ever of GEM foils produced with a single-mask etching developed by CERN-TE-MPE-EM for large area foils
- ◎ <mark>70 cm</mark> active length
- \odot 650 µm XV pitch strip readout
- O 25k chan GASTONE FEE [NIM A 732 (2013)]
- \odot 1600 HV channels
- **FEE DAQ system** [JINST 08 T04004 (2013)]
- ◎ <mark>3/2/2/2 mm</mark> triple-GEM layout
- Ar/Iso:90/10 gas mixture
- I2000 gas gain
- \odot 2% X_0 material budget

Kapton/copper multilayer flexible circuit built at CERN TE-MPE-EM X strip V strip X strip V strip X strip

(Tot thickness 300 μ m)

X-view: longitudinal strips
V-view: connection of pads through conductive vias and a common backplane

Optimized Control Construction Novel technique developed at LNF and 1st CGEM detector in HEP experiment

◎ 3 anode readout foils spliced w/o overlap: 6 cm kapton strips glued head-to-head joints

© GEM rolled on a cylindrical mold

○ The GEM mold is fixed at the bottom of the insertion machine. Readout plane is fixed at the top. Electrodes are axially aligned with a precision of 0.1mm/1.5m

Cylindrical GEM Inner Tracker

○ Four layers completed and detector integration

◎ Integration on DAPHNE beam-pipe & insertion in KLOE

Cooling and Temperature control

Heat sources

Beam-pipe (luminosity dependent)
FEE: 180 chips = 100W per side

IT Cables per side:

- 90 readout cables
- 69 HV cables
- S6 gas tubes
- 8 cooling tubes
- 6 temp. probes

Two dedicated cooling systems
Air blowing between BP and IT
Water radiators on FEE

Inner Tracker working point

First CGEM detector used in high-energy physics experiment

Operation point optimization

Dips show GEM foil micro-sector structure

	(kV/c	em)			(V)	
Drift	T1	T2	IND.	Gl	G2	G3
1,5	3	3	5	285	280	265

Induction field from 5 to 6 kV/cm

Operation point optimization

© Extrapolate cosmic-ray muon DC tracks to IT with straight-line approximation Output Look for reconstructed IT clusters close to expected positions from DC track

Cosmic-ray muons 3.855/2 0.9771 ± 0.007135 -0.5051 ± 0.04709 X-view Layer #1 0.6 $E_{IND} = 6 \text{ kV/cm}$ 0_5 5000 10000 15000 20000

G3

86 % → ε_(6 kV/cm) = 94% @ G = 12000

© Compromise between good efficiency and stable detector operation with beams 23 Erika De Lucia - 2nd Jagiellonian Symposium of Fundamental and Applied Subatomic Physics - Krakow 9th June

Operation with collisions (]

One day @ KLOE-2 (with calibration time)

> L2 Trigger rate 7 kHz

Important improvement in normal collision operation:

- injection optimization
- online feedback to DAFNE from 3 background limits

EMC EndCaps < 500 kHz DC total current < 3000 µA IT L1 current < 3000 nA

Erika De Lucia – 2nd Jagiellonian Symposium of

Operation with collisions (II)

IT Online monitoring

Old HV scheme:

7 independent channels per layer possible increase of discharge propagation among GEM stages when current saturates for one electrode

New HV scheme:

1 common channel for all layers with Dedicated CAEN Board successfully tested and installed in Sep 2016 on all layers for safer operation with collisions

Operation with collisions (II)

IT Online monitoring

Old HV scheme:

7 independent channels per layer possible increase of discharge propagation among GEM stages when current saturates for one electrode

New HV scheme:

1 common channel for all layers with Dedicated CAEN Board successfully tested and installed in Sep 2016 on all layers for safer operation with collisions

Efficiency with Bhabha scattering events

Efficienc) 8.0 5000 Selected using DC information: 4000 0.7 0.6 3000 2 tracks 0.5 0.4 $R_{PCA} < 5 \text{ cm }\&$ 2000 DC expected 0.3 $abs(z_{PCA}) < 5$ 0.2 T measured cm 1000 0. ϕp_{π} > 300 MeV <u>0</u>8 Δ 6 z (cm) z (cm

Align & Calibrate CGEM detector

Challenging. Never done before.

1. NON-RADIAL TRACKS

The angle formed by a track and the radial E-field direction introduces: **shift & spread** of the e- cloud

2. MAGNETIC FIELD

0.52 T B-field orthogonal to Triple-GEMs E-fields: **shift** $\Delta x(a_L)$ and **larger spread of the electron cloud**

1. NON-RADIAL TRACKS

The angle formed by a track and the radial E-field direction introduces: **shift & spread** of the e- cloud

2. MAGNETIC FIELD

0.52 T B-field orthogonal to Triple-GEMs E-fields: **shift** $\Delta x(a_L)$ and **larger spread of the electron cloud**

- - Select DC tracks crossing IT at 2 points
 - Corrections as a function of track parameters
 - Shifts and rotations to align the IT

1. NON-RADIAL TRACKS

The angle formed by a track and the radial E-field direction introduces: **shift & spread** of the e- cloud

2. MAGNETIC FIELD

0.52 T B-field orthogonal to Triple-GEMs E-fields: **shift** $\Delta x(a_L)$ and **larger spread of the electron cloud**

- - Select DC tracks crossing IT at 2 points
 - Corrections as a function of track parameters
 - Shifts and rotations to align the IT

Cosmic-ray muon data acquired with B-field ON

- Calibration of Non-radial track & B-field effects
- Corrections, Shifts and rotations from B-field OFF sample
- Study and apply B-field effects corrections

1. NON-RADIAL TRACKS

The angle formed by a track and the radial E-field direction introduces: **shift** & **spread** of the e- cloud

2. MAGNETIC FIELD

0.52 T B-field orthogonal to Triple-GEMs E-fields: **shift** $\Delta x(a_L)$ and **larger spread of the electron cloud**

- - Select DC tracks crossing IT at 2 points
 - Corrections as a function of track parameters
 - Shifts and rotations to align the IT

Cosmic-ray muon data acquired with B-field ON

- Calibration of Non-radial track & B-field effects
 - Corrections, Shifts and rotations from B-field OFF sample
 Study and apply B-field effects corrections

Bhabha scattering events

- Check calibration of Non-radial track & B-field effects
- Corrections , Shifts and rotations from cosmic-ray muons with B-field ON sample

Detector Status: IT Calibration (II)

◎ Path to 1st Alignment & Calibration: Layer #4

Tracking with IT+DC

IT+DC Tracking & Vertex: $\phi \rightarrow \pi^{\dagger}\pi^{-}\pi^{0}$

Vertex resolution figure of merit with decay at IP:

- \odot 2 tracks from IP with $p_T > 100 \text{ MeV}$
- \odot YV negligible contribution from beam size (tens of μm)

Erika De Lucia – 2nd Jagiellonian Symposium of Fundamental and Applied Subatomic Physics – Krakow 9th June

Pipe

^{1st} hit of DC track

Kalman Filter IT

IT Lavers

IT+DC Tracking & Vertex: Ks $\rightarrow \pi^{\dagger}\pi^{\dagger}$

 \bigcirc

KLOE-2 Status & Plans

© KLOE-2 Run started in November 2014 Daily record : 13 (11.0) pb⁻¹ delivered (acquired) Peak Luminosity: 2.2x10³² cm⁻² s⁻¹

© KLOE-2 Target >= 5 fb⁻¹ acquired Luminosity by end of March 2018

◎ Intermediate L Milestone additional 2 fb⁻¹ delivered L by July 2017

KLOE-2 Physics updated wrt EPJC (2010) 68, 619

KAON Physics:

- CPT and QM tests with kaon interferometry
- Direct T and CPT tests using entanglement
- CP violation and CPT test: $K_{s} > 3\pi^{0}$

direct measurement of $Im(\epsilon'/\epsilon)$ (lattice calc. improved)

- CKM Vus: K_S semileptonic decays and A_S (also CP and CPT test) Kµ3 form factors
 - $\chi pT: K_{s} \rightarrow \gamma \gamma$
 - Search for rare K_s decays

Hadronic cross section

- Measurement of a_µ^{HLO} in the space-like region using Bhabha process
- ISR studies with 3π , 4π final states
- \mathbf{F}_{π} with increased statistics

Dark forces:

- Improve limits on: Uy associate production $e+e- \rightarrow U\gamma \rightarrow \pi\pi\gamma, \mu\mu\gamma$
- Higgstrahlung e+e-→ Uh'→µ+µ- + miss. E
- Leptophobic B boson search $\phi \rightarrow \eta B, B \rightarrow \pi^0 \gamma, \eta \rightarrow \gamma \gamma$
 - $\eta \rightarrow B\gamma, B \rightarrow \pi^0\gamma, \eta \rightarrow \pi^0\gamma\gamma$
- Search for U invisible decays

Light meson Physics:

- η decays, ω decays, TFF $\phi \rightarrow \eta e^+e^-$
- C,P,CP violation: improve limits on $\eta \rightarrow \gamma \gamma \gamma$, $\pi^+ \pi^-$, $\pi^0 \pi^0$, $\pi^0 \pi^0 \gamma$
- improve $\eta \rightarrow \pi^+\pi^-e^+e^-$ (non-CKM CP viol.)
- $\chi pT: \eta \rightarrow \pi^0 \gamma \gamma$
- Light scalar mesons: $\phi \rightarrow K_S K_S \gamma$ (1st obs?)
- $\gamma\gamma$ Physics: $\gamma\gamma \rightarrow \pi^0$ and π^0 TFF
- light-by-light scattering
- axion-like particles

Conclusions

○ The KLOE detector has been upgraded with several new sub-detectors for the new data taking campaign within the KLOE-2 project started on Nov 2014

- $\int Ldt = 3.7 \text{ fb}^{-1}$ acquired
- \odot The goal is to acquire at least [Ldt = 5 fb⁻¹ by the end of March 2018]

Ist Detector Alignment and calibration performed Challenging. Never done before.

 \odot Results from IT+DC integrated tracking and vertexing using 1st align & Calib parameters with $\phi \rightarrow \pi^+ \pi^- \pi^0$ and $K_S \rightarrow \pi^+ \pi^-$ samples are good and will improve with refined alignment and calibration we are presently working on

Spare Slides

Operation with collisions (1

Run-I HV scheme

- Independent channels referred to ground
- Ourrent limit only to top GEM faces
- Software common trip

Run-II HV scheme (Oct '15)

- single current generator channel
- passive voltage divider

Dedicated CAEN Board

- Individual floating channels system allows safe operation & single voltages adjustment
- I board borrowed from CAEN succesfully tested on Layer3 since November 2015
- All 4 layers instrumented (Sep '16)

IT current saturation with e- injection decrese of V_{top} and increase of fields w possible propagation of discharge between GEM stages

HV CAEN A1515CG on Layer #3 w injections

Starting point: Layer #4 residuals

Detector Status: IT Calibration (I)

Layer #4 residuals:1st align & calib using cosmic-ray muons with B OFF

Detector Status: IT Calibration (II)

◎ 1st align & calib for all layers using cosmic-ray muons with B OFF

Erika De Lucia – 2nd Jagiellonian Symposium of Fundamental and Applied Subatomic Physics – Krakow 9th June

Erika De Lucia – 2nd Jagiellonian Symposium of Fundamental and Applied Subatomic Physics – Krakow 9th June