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Consequences of CPT symmetry: equality of masses, lifetimes, |q| and |µ| of a 
particle and its anti-particle. 

Neutral meson systems offer unique possibilities to test CPT invariance; e.g. taking 
as figure of merit the fractional difference between the masses of a particle and its 
anti-particle: 
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Testing CPT: introduction 

2 

CPT  theorem holds for any QFT formulated on flat space-time which assumes: 
(1) Lorentz invariance  (2) Locality (3) Unitarity (i.e. conservation of probability). 

Extension of CPT theorem to a theory of quantum gravity far from obvious. 
(e.g. CPT violation appears in several QG models) 
huge effort in the last decades to study and shed light on QG phenomenology 
⇒  Phenomenological CPTV parameters to be constrained by experiments 
 

The three discrete symmetries of QM, C (charge conjugation: q ! -q),   
P (parity: x ! -x), and  T (time reversal: t ! -t) are known to be violated in nature both singly 
and in pairs. Only CPT appears to be an exact symmetry of nature. 

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..  



A. Di Domenico  KAON 2016 conference, 14 - 17  September 2016, University of Birmingham, UK 
 
 

Consequences of CPT symmetry: equality of masses, lifetimes, |q| and |µ| of a 
particle and its anti-particle. 

Neutral meson systems offer unique possibilities to test CPT invariance; e.g. taking 
as figure of merit the fractional difference between the masses of a particle and its 
anti-particle: 

181000
−<− KKK mmm 1410 00

−<− BBB mmm 810 −<− ppp mmm
neutral K system neutral B system proton- anti-proton 

Testing CPT: introduction 

3 

CPT  theorem holds for any QFT formulated on flat space-time which assumes: 
(1) Lorentz invariance  (2) Locality (3) Unitarity (i.e. conservation of probability). 

Extension of CPT theorem to a theory of quantum gravity far from obvious. 
(e.g. CPT violation appears in several QG models) 
huge effort in the last decades to study and shed light on QG phenomenology 
⇒  Phenomenological CPTV parameters to be constrained by experiments 
 

The three discrete symmetries of QM, C (charge conjugation: q ! -q),   
P (parity: x ! -x), and  T (time reversal: t ! -t) are known to be violated in nature both singly 
and in pairs. Only CPT appears to be an exact symmetry of nature. 

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..  



A. Di Domenico  KAON 2016 conference, 14 - 17  September 2016, University of Birmingham, UK 
 
 

€ 

δ =
H11 −H22

2 λS − λL( )
=
1
2

m
K 0
−m

K 0( ) − i 2( ) ΓK 0
−Γ

K 0( )
Δm + iΔΓ/2

 

 ε LS δε ±=,

€ 

Δm = mL −mS    ,      ΔΓ = ΓS −ΓL
Δm = 3.5 ×10−15  GeV
ΔΓ≈ ΓS ≈ 2Δm = 7 ×10−15  GeV

ε =
H12 −H21

2 λS −λL( )
=
−iℑM12 −ℑΓ12 2
Δm+ iΔΓ / 2

 

•  δ ≠ 0 implies CPT violation  
•  ε ≠ 0 implies T violation 
•  ε ≠ 0 or δ ≠ 0 implies CP violation 

012 =Γℑ(with a phase convention               ) 

CPT violation:

CP violation:

Neutral kaons 

T violation:
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Neutral kaons 
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<m> 
(GeV) 

 

Δm 
(GeV) 

<Γ>
(GeV) 

ΔΓ/2 
(GeV) 

K0 0.5 3x10-15 3x10-15 3x10-15 

D0 

 
1.9 6x10-15 2x10-12 1x10-14 

B0
d

 5.3 3x10-13 4x10-13 O(10-15) 
(SM prediction) 

B0
s
 

 
5.4 1x10-11 4x10-13 3x10-14 

neutral kaons vs other oscillating meson systems  
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Comparing “survival” probabilities of K0 and K0 measuring 
semileptonic decays vs time: 

€ 

ΓK 0 −ΓK 0( )   
10−18GeV( )

Combining Reδ and Imδ results 
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Assuming                                , i.e. no CPT viol. in decay: ( ) 000 =− KK ΓΓ

m
K 0 −mK 0 < 4.0×10−19   GeV  at 95% c.l. 

“Standard” CPT test 

ℜδ   =  (3.0 ± 3.3 ± 0.6) × 10-4

CPLEAR   
PLB444 (1998) 52 

 Im δ =(-0.7 ± 1.4) × 10-5

PDG fit (2014)  
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using the unitarity constraint  
(Bell-Steinberger relation) 
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– 5–

Figure 1: Top: allowed region at 68% and 95%
C.L. in the ℜ(ϵ), ℑ(δ) plane. Bottom: allowed
region at 68% and 95% C.L. in the ∆M, ∆Γ
plane.

August 21, 2014 13:17
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Direct CPT test in transitions  
Motivations: 
•  test the CPT symmetry directly in transition processes between kaon states, 

rather than comparing masses, lifetimes, or other intrinsic properties of particle 
and anti-particle states. 

•  CPT violating effects may not appear at first order in diagonal mass terms 
(survival probabilities) while they can manifest at first order in transitions (non-
diagonal terms). 

 
•  In standard WWA the test is related to Reδ, a genuine CPT violating effect 

independent of ∆Γ, i.e. not requiring the decay as an essential ingredient.  
 
•  Clean formulation required. Possible spurious effects induced by CP violation 

in the decay and/or a violation of the ∆S = ∆Q rule have to be well under 
control. 

Probing CPT:  J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139 
Time-reversal violation: J. Bernabeu, A.D.D., P. Villanueva, NPB 868 (2013) 102 
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• The transformation of a system corresponding to the inversion of the time 
coordinate, the formal substitution t → −t, is usually called ‘time reversal’, but a 
more appropriate name would actually be motion reversal. 

 

• Exchange of in <-> out states and reversal of all momenta and spins tests time 
reversal, i.e. the symmetry of the responsible dynamics for the observed process 
under time reversal t → −t  (transformation implemented in QM by an antiunitary 
operator) 

• Similarly for CPT tests: the exchange of in <-> out states etc.. is required. 

Time Reversal  

9 
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•  The in<->out states inversion required in a DIRECT test of these symmetries  
can be performed exploiting the properties of the quantum entanglement. 

•  In maximally entangled systems the complete knowledge of the system as a 
whole is encoded in the state, no information on single subsystems is 
available. 

•  Once a measurement is performed on one subsystem, then the information 
is immediately transferred to its partner; the result of an analogous 
measurement on it is determined. 

Quantum entanglement as a tool 
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Definition of states 
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the kaon proper time t as pure exponentials

|KS(t)⟩ = e−iλSt|KS⟩
|KL(t)⟩ = e−iλLt|KL⟩ . (2.1)

with λS,L = mS,L − iΓS,L/2, and ΓS,L = (τS,L)−1. They are usually expressed in terms of

the flavor eigenstates |K0⟩, |K̄0⟩ as:

|KS⟩ =
1√

2 (1 + |ϵS |2)
[
(1 + ϵS)|K0⟩+ (1− ϵS)|K̄0⟩

]
(2.2)

|KL⟩ =
1√

2 (1 + |ϵL|2)
[
(1 + ϵL)|K0⟩ − (1− ϵL)|K̄0⟩

]
, (2.3)

with ϵS and ϵL two small complex parameters describing the CP impurity in the physical

states. One can equivalently define ϵ ≡ (ϵS+ϵL)/2, and δ ≡ (ϵS−ϵL)/2; adopting a suitable

phase convention (e.g. the Wu-Yang phase convention [29]) ϵ ̸= 0 implies T violation, δ ̸= 0

implies CPT violation, while δ ̸= 0 or ϵ ̸= 0 implies CP violation.

Let us also consider the states |K+⟩, |K−⟩ defined as follows: |K+⟩ is the state filtered

by the decay into ππ (π+π+ or π0π0), a pure CP = +1 state; analogously |K−⟩ is the state
filtered by the decay into 3π0, a pure CP = −1 state. Their orthogonal states correspond

to the states which cannot decay into ππ or 3π0, defined, respectively, as

|K̃−⟩ ≡ Ñ− [|KL⟩ − ηππ|KS⟩] (2.4)

|K̃+⟩ ≡ Ñ+ [|KS⟩ − η3π0 |KL⟩] (2.5)

with

ηππ =
⟨ππ|T |KL⟩
⟨ππ|T |KS⟩

(2.6)

η3π0 =
⟨3π0|T |KS⟩
⟨3π0|T |KL⟩

, (2.7)

and Ñ± two suitable normalization factors. With these definitions of states, |K+⟩ and |K−⟩
can be explicitly constructed imposing the conditions ⟨K̃±|K∓⟩ = 0:

|K+⟩ = N+ [|KS⟩+ α|KL⟩] (2.8)

|K−⟩ = N− [|KL⟩+ β|KS⟩] (2.9)

where

α =
η⋆ππ − ⟨KL|KS⟩
1− η⋆ππ⟨KS|KL⟩

, (2.10)

β =
η⋆3π0 − ⟨KS|KL⟩
1− η⋆3π0⟨KL|KS⟩

, (2.11)

and N± are two normalization factors.

Here we have kept separate definitions of the filtered states |K+⟩ and |K−⟩, which are

observed through their decay, from the tagged states |K̃+⟩ and |K̃−⟩, which are prepared

– 3 –

Even though the decay products are orthogonal, the filtered |K+⟩ and |K−⟩  
states can still be nonorthoghonal.    
Condition of orthoghonality: 
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exploiting the entanglement of the kaon pairs, as we will discuss in the next section. |K+⟩
and |K−⟩ are defined as the filtered states when observing definite CP = ±1 decay products.

Even though the decay products are orthogonal, the filtered |K+⟩ and |K−⟩ states can still

be nonorthoghonal. In the following we will assume

|K+⟩ ≡ |K̃+⟩
|K−⟩ ≡ |K̃−⟩ , (2.12)

which corresponds to impose the condition of orthogonality ⟨K−|K+⟩ = 0, implying that

β = −ηππ and α = −η3π0 , and a precise relationship between the two amplitude ratios ηππ
and η3π0 :

ηππ + η⋆3π0 − ηππη
⋆
3π0⟨KL|KS⟩ = ⟨KS|KL⟩

=
ϵL + ϵ⋆S√

(1 + |ϵL|2)(1 + |ϵS |2)
, (2.13)

Neglecting terms of O(ϵ3) (with ϵ = O(10−3)), therefore with a high degree of accuracy,

O(10−9), this translates into the following relation:

ηππ + η⋆3π0 = ϵL + ϵ⋆S . (2.14)

This clearly indicates that direct CP and CPT violation have to be neglected when imposing

assumption (2.12). In fact, for instance, eq. (2.14) cannot be simultaneously satisfied for

π+π− and π0π0 decays, being (ηπ+π− − ηπ0π0) = 3ϵ′, with ϵ′ = O(10−6) the direct CP

violation parameter [8]. Similar subtle points were previously discussed in the literature

for the T-asymmetry measurement in the flavour-CP eigenstates of J/ΨK0 decay channels

of Bd’s [30], as well as for any pair of decay channels [31].

More in general, while possible direct CPT violation contributions might be still cast

into the definition of the observable quantities for the CPT test that will be presented in

the next section, direct CP violation may appear as a contaminating fake effect which is

necessary to keep well under control.

Finally the validity of the ∆S = ∆Q rule will be assumed in the following, so that the

two flavor orthogonal eigenstates |K0⟩ and |K̄0⟩ are identified by the charge of the lepton

in semileptonic decays. When the decay into π−ℓ+ν is observed, it cannot come from |K̄0⟩
so that the state |K0⟩ is filtered, and vice-versa for the decay into π+ℓ−ν̄.

The relevance of these assumptions will be discussed in section 4, where it will be

shown that they can be safely released for our purposes, without affecting the cleanliness

of the test.

3 CPT symmetry test at a φ-factory

Similarly to the T symmetry test proposed at a φ-factory (or B-factory) [22–25], the imple-

mentation of the CPT test proposed here exploits the Einstein-Podolsky-Rosen (EPR) [32]

entanglement of the neutral meson pair produced in φ → K0K̄0 decays. In fact in this case

– 4 –
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4 Impact of the approximations on the test. Results.

In order to study the impact of the approximations involved in the proposed CPT test,

namely negligible direct CP and CPT violation contributions in the ππ and 3π0 channels,

and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect
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∣∣∣
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indicating that the quantity DCPT is measurable within the same experiment.
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Table 2
Possible comparisons between CP-conjugated transitions and the associated
time-ordered decay products in the experimental φ-factory scheme.

Reference CP-conjugate

Transition Decay products Transition Decay products

K0 → K+ (ℓ−,ππ) K̄0 → K+ (ℓ+,ππ)

K0 → K− (ℓ−,3π0) K̄0 → K− (ℓ+,3π0)

K̄0 → K+ (ℓ+,ππ) K0 → K+ (ℓ−,ππ)

K̄0 → K− (ℓ+,3π0) K0 → K− (ℓ−,3π0)

Table 3
Possible comparisons between CPT -conjugated transitions and the associated
time-ordered decay products in the experimental φ-factory scheme.

Reference CPT -conjugate

Transition Decay products Transition Decay products

K0 → K+ (ℓ−,ππ) K+ → K̄0 (3π0,ℓ−)

K0 → K− (ℓ−,3π0) K− → K̄0 (ππ,ℓ−)

K̄0 → K+ (ℓ+,ππ) K+ → K0 (3π0,ℓ+)

K̄0 → K− (ℓ+,3π0) K− → K0 (ππ,ℓ+)

R3($t) = P
[
K̄0(0) → K+($t)

]
/P

[
K+(0) → K̄0($t)

]
,

R4($t) = P
[
K̄0(0) → K−($t)

]
/P

[
K−(0) → K̄0($t)

]
. (15)

The measurement of any deviation from the prediction

R1($t) = R2($t) = R3($t) = R4($t) = 1 (16)

imposed by T invariance is a signal of T violation. This outcome will be highly rewarding as a
model-independent and a direct observation of T violation.

If we express two generic orthogonal bases {KX, K̄X} and {KY, K̄Y}, which in our case corre-
spond to {K0, K̄0} or {K+,K−}, as follows:

|KX⟩ = XS |KS⟩ + XL|KL⟩, (17)

|K̄X⟩ = X̄S |KS⟩ + X̄L|KL⟩, (18)

|KY⟩ = YS |KS⟩ + YL|KL⟩, (19)

|K̄Y⟩ = ȲS |KS⟩ + ȲL|KL⟩, (20)

the generic quantum mechanical expression for the probabilities entering in Eqs. (15) is given
by

P
[
KX(0) → KY($t)

]
=

∣∣〈KY
∣∣KX($t)

〉∣∣2

= 1
|detY |2

∣∣e−iλS$tXSȲL − e−iλL$tXLȲS

∣∣2

= 1
|detY |2

{
e−ΓS$t |XSȲL|2 + e−ΓL$t |XLȲS |2

− 2e− (ΓS+ΓL)
2 $tℜ

(
ei$m$tXSȲLX⋆

LȲ ⋆
S

)}
, (21)

of the pair is totally antisymmetric and can be written in terms of any pair of orthogonal
states, e.g. K0 and K̄0, or K

+

and K�, as:

|ii = 1p
2
{|K0i|K̄0i � |K̄0i|K0i} =

1p
2
{|K

+

i|K�i � |K�i|K+

i} . (3.1)

Thus, exploiting the perfect anticorrelation of the state implied by eq. (3.1), which remains
unaltered until one of the two kaons decays, it is possible to have a “flavor-tag”or a “CP-tag”,
i.e. to infer the flavor (K0 or K̄0) or the CP (K

+

or K�) state of the still alive kaon by
observing a specific flavor decay1 (`� or `

+) or CP decay (⇡⇡ or 3⇡0) of the other (and
first decaying) kaon in the pair. For instance, the transition K0 ! K

+

and its associated
probability P

⇥
K0(0) ! K

+

(�t)
⇤

corresponds to the observation of a `

� decay at a proper
time t

1

of the opposite K̄0 and a ⇡⇡ decay at a later proper time t

2

= t

1

+�t, with �t > 0.
In other words, the `

� decay of a kaon on one side prepares, in the quantum mechanical
sense, the opposite (if undecayed) kaon in the state |K0i at a starting time t = 0. The |K0i
state freely evolves in time until its ⇡⇡ decay filters it in the state |K

+

i at a time t = �t.
In this way one can experimentally access all the four reference transitions listed in

Table 1, and their T , CP and CPT conjugated transitions. It can be easily checked that
the three conjugated transitions correspond to different categories of events; therefore the
comparisons between reference vs conjugated transitions correspond to independent T , CP
and CPT tests.

Reference T -conjug. CP-conjug. CPT -conjug.
K0 ! K

+

K
+

! K0 K̄0 ! K
+

K
+

! K̄0

K0 ! K� K� ! K0 K̄0 ! K� K� ! K̄0

K̄0 ! K
+

K
+

! K̄0 K0 ! K
+

K
+

! K0

K̄0 ! K� K� ! K̄0 K0 ! K� K� ! K0

Table 1. Scheme of possible reference transitions and their associated T , CP or CPT conjugated
processes accessible at a �-factory.

For the CPT symmetry test one can define the following ratios of probabilities:

R

1,CPT (�t) = P

⇥
K

+

(0) ! K̄0(�t)
⇤
/P

⇥
K0(0) ! K

+

(�t)
⇤

R

2,CPT (�t) = P

⇥
K0(0) ! K�(�t)

⇤
/P

⇥
K�(0) ! K̄0(�t)

⇤

R

3,CPT (�t) = P

⇥
K

+

(0) ! K0(�t)
⇤
/P

⇥
K̄0(0) ! K

+

(�t)
⇤

R

4,CPT (�t) = P

⇥
K̄0(0) ! K�(�t)

⇤
/P

⇥
K�(0) ! K0(�t)

⇤
. (3.2)

The measurement of any deviation from the prediction Ri,CPT (�t) = 1 imposed by CPT
invariance is a signal of CPT violation.
It is worth noting that for �t = 0:

R

1,CPT (0) = R

2,CPT (0) = R

3,CPT (0) = R

4,CPT (0) = 1 (3.3)
1
In the following the semileptonic decays ⇡+`�⌫ or ⇡�`+⌫̄ are denoted as `� and `+, respectively.
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where the coefficient C(fX̄ , fY ), depending only on the final states fX̄ and fY , is given by:

C(fX̄ , fY ) =
1

2(ΓS + ΓL)

∣∣⟨fX̄ |T |K̄X⟩⟨fY |T |KY⟩
∣∣2 (3.7)

and P [KX(0) → KY(∆t)] is the generic KX → KY transition probability which contains

the ∆t time dependence only.

It’s worth noting that a similar expression can be easily formulated also for the case ∆t < 0:

I(fX̄ , fY ;∆t) = C(fX̄ , fY )× P
[
K̄Y(0) → K̄X(|∆t|)

]
. (3.8)

Therefore, at a φ-factory one can define the observable ratios:

Rexp
2,CPT(∆t) ≡ I(ℓ−, 3π0;∆t)

I(ππ, ℓ−;∆t)
(3.9)

Rexp
4,CPT(∆t) ≡ I(ℓ+, 3π0;∆t)

I(ππ, ℓ+;∆t)
, (3.10)

which are related to the Ri,CPT(∆t) ratios defined in eqs. (3.2) as follows, for ∆t ≥ 0:

Rexp
2,CPT(∆t) = R2,CPT(∆t)×DCPT

Rexp
4,CPT(∆t) = R4,CPT(∆t)×DCPT (3.11)

whereas for ∆t < 0 one has:

Rexp
2,CPT(∆t) = R1,CPT(|∆t|)×DCPT

Rexp
4,CPT(∆t) = R3,CPT(|∆t|)×DCPT , (3.12)

with DCPT the ratio of coefficients:

DCPT =
C(ℓ−, 3π0;∆t)

C(ππ, ℓ−;∆t)
=

C(ℓ+, 3π0;∆t)

C(ππ, ℓ+;∆t)
=

∣∣⟨3π0|T |K−⟩
∣∣2

|⟨ππ|T |K+⟩|2
(3.13)

that can be expressed, with a high degree of accuracy, at least O(10−7), as:

DCPT =
BR

(
KL → 3π0

)

BR (KS → ππ)

ΓL

ΓS
. (3.14)

The value of DCPT can be therefore evaluated from branching ratios and lifetimes,

but it is also directly measurable from the observable ratios (3.9) and (3.10), as it will be

discussed in detail in the next section.

The explicit expressions of ratios (3.9) and (3.10) (neglecting higher order terms in

small parameters and for not too large negative ∆t) are:

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K−(0) → K̄0(∆t)]
×DCPT

≃ |1− 2δ|2
∣∣∣1 + 2δe−i(λS−λL)∆t

∣∣∣
2
×DCPT , (3.15)
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I(fX̄ , fY ;∆t) = C(fX̄ , fY )× P
[
K̄Y(0) → K̄X(|∆t|)

]
. (3.8)

Therefore, at a φ-factory one can define the observable ratios:

Rexp
2,CPT(∆t) ≡ I(ℓ−, 3π0;∆t)

I(ππ, ℓ−;∆t)
(3.9)

Rexp
4,CPT(∆t) ≡ I(ℓ+, 3π0;∆t)

I(ππ, ℓ+;∆t)
, (3.10)

which are related to the Ri,CPT(∆t) ratios defined in eqs. (3.2) as follows, for ∆t ≥ 0:

Rexp
2,CPT(∆t) = R2,CPT(∆t)×DCPT

Rexp
4,CPT(∆t) = R4,CPT(∆t)×DCPT (3.11)

whereas for ∆t < 0 one has:

Rexp
2,CPT(∆t) = R1,CPT(|∆t|)×DCPT

Rexp
4,CPT(∆t) = R3,CPT(|∆t|)×DCPT , (3.12)

with DCPT the ratio of coefficients:

DCPT =
C(ℓ−, 3π0;∆t)

C(ππ, ℓ−;∆t)
=

C(ℓ+, 3π0;∆t)

C(ππ, ℓ+;∆t)
=

∣∣⟨3π0|T |K−⟩
∣∣2

|⟨ππ|T |K+⟩|2
(3.13)

that can be expressed, with a high degree of accuracy, at least O(10−7), as:

DCPT =
BR

(
KL → 3π0

)

BR (KS → ππ)

ΓL

ΓS
. (3.14)

The value of DCPT can be therefore evaluated from branching ratios and lifetimes,

but it is also directly measurable from the observable ratios (3.9) and (3.10), as it will be

discussed in detail in the next section.

The explicit expressions of ratios (3.9) and (3.10) (neglecting higher order terms in

small parameters and for not too large negative ∆t) are:

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K−(0) → K̄0(∆t)]
×DCPT

≃ |1− 2δ|2
∣∣∣1 + 2δe−i(λS−λL)∆t

∣∣∣
2
×DCPT , (3.15)
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)
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. (3.14)

The value of DCPT can be therefore evaluated from branching ratios and lifetimes,

but it is also directly measurable from the observable ratios (3.9) and (3.10), as it will be
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The explicit expressions of ratios (3.9) and (3.10) (neglecting higher order terms in
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Figure 1. The ratios Rexp
2,CPT(∆t) and Rexp

4,CPT(∆t) as a function of ∆t. For visualization purposes
the CPT violating parameters have been fixed to the values ℜδ = 3.3× 10−4 and ℑδ = 1.6× 10−5.

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K−(0) → K0(∆t)]
×DCPT

≃ |1 + 2δ|2
∣∣∣1− 2δe−i(λS−λL)∆t

∣∣∣
2
×DCPT . (3.16)

The expected behavior of the observables Rexp
2,CPT(∆t) and Rexp

4,CPT(∆t) as a function of

∆t, and without the approximations of eqs. (3.15) and (3.16), is shown in figure 1, where

— for visualization purposes — the probabilities involved have been evaluated fixing the

CPT violating parameters ℜδ and ℑδ to a value different from zero, and equal to their

present uncertainties [8], i.e. ℜδ = 3.3 × 10−4 and ℑδ = 1.6 × 10−5. In figure 2 a zoom

of the ∆t > 0 region, where the “plateau” regimes (3.4) and (3.5) dominate, is shown.

Experimentally, this is the most interesting and statistically most populated region, where

the best sensitivity to CPT violation effects can be reached by the KLOE-2 experiment

(see section 4).

We emphasise that these observables are genuine CPT violating effects by comparing

experimentally the probability for a given transition and its CPT reverse, independent of

any theoretical scenario generating this effect. When they are interpreted in a model for

CPT violation in the mass matrix (i.e. with δ ̸= 0) and nothing else, these observables can

be compared with the result expected for the survival probabilities (diagonal processes)

like the one that has been measured by the CPLEAR experiment [18]. In this case, the
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Figure 2. A zoom of the plots shown in figure 1 in the region 0 ≤ ∆t ≤ 20τS .

CPLEAR asymmetry can be easily translated into our formalism as an observable ratio of

probabilities (in this case DCPT = 1):

I(ℓ−, ℓ+;∆t)

I(ℓ+, ℓ−;∆t)
=

P [K0(0) → K0(∆t)]

P [K̄0(0) → K̄0(∆t)]

≃ |1− 4δ|2
∣∣∣∣1 +

8δ

1 + e+i(λS−λL)∆t

∣∣∣∣
2

. (3.17)

The comparison of equations (3.15) and (3.16) with equation (3.17) shows that even

within the same model, the difference in the dependence on the CPT violation parameter

δ is apparent. In the limit ∆Γ → 0 the ratio (3.17) tends to unity for all times, whereas

ratios (3.15) and (3.16) are different from unity through ℜδ, which is independent of ∆Γ.

Moreover, just as an illustration of the different sensitivity of these observables to CPT

violation, in the hypothesis of CPT-violating effects introduced via a deviation from con-

ventional quantum mechanics, believed to reflect the loss of quantum coherence expected in

some approaches to quantum gravity [37, 38], the ratio (3.17) is insensitive to these effects

(up to second order in the CPT violation parameters of the model and for all times [38]),

while it can be shown that ratios (3.15) and (3.16) are sensitive to them at first order in

some of the parameters.
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As an illustration of the different  
sensitivity: it vanishes up to  
second order in CPTV and  
decoherence parameters α,β,γ
(Ellis, Mavromatos et al. PRD1996) 
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Figure 4. A zoom of the plots shown in figure 3 in the region 0 ≤ ∆t ≤ 20τS .

and N0, N0̄ two suitable normalization factors.

The orthogonal pairs {K̃0,K0̄} and {K̃0̄,K0} (note the different symbols adopted in

this case with respect to K0, K̄0) constitute now the true orthogonal bases to be considered.

The effect of the ∆S ̸= ∆Q parameters x+ and x− can be easily singled out in the explicit

expressions of the observable ratios (still neglecting higher order terms in small parameters

and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K̃0(0) → K−(∆t)]

P [K̃−(0) → K0̄(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ−)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ−)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ−

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ−

− (ηℓ−)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.17)
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Rexp
4,CPT(∆t) =

P [K̃0̄(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ+)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ+)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ+

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ+

− (ηℓ+)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1 + 2δ + 2x+ + 2x−|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT

= |1 + 2δ + 2x+ + 2x−|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.18)

In the limit ∆t = 0 the deviation of each ratio from unity (once DCPT is factored out)

is given by the contaminating parameters ℜϵ′3π0 , ℜϵ′ππ, and x+, and by the x− parameter,

which is explicitly CPT violating in the ∆S ̸= ∆Q decay amplitudes, and can be considered

a genuine source of CPT violation:

Rexp
2,CPT(0) =

[
1 + 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ − x−)

]
×DCPT (4.19)

Rexp
4,CPT(0) =

[
1− 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ + x−)

]
×DCPT . (4.20)

In the limit ∆t ≫ τS we get:

Rexp
2,CPT(∆t ≫ τS) = (1− 4ℜδ + 4ℜx+ − 4ℜx−)×DCPT (4.21)

Rexp
4,CPT(∆t ≫ τS) = (1 + 4ℜδ + 4ℜx+ + 4ℜx−)×DCPT . (4.22)

These results suggest the possibility of having a measurement independent of x+ and

DCPT, directly measuring the double ratio:

Rexp
2,CPT(∆t)

Rexp
4,CPT(∆t)

≃ (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2 (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2

= (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
,

(4.23)

which becomes for ∆t = 0:

Rexp
2,CPT(0)

Rexp
4,CPT(0)

= 1− 8ℜx− + 4ℜ(ϵ′3π0 − ϵ′ππ) . (4.24)

and in the limit ∆t ≫ τS :

Rexp
2,CPT(∆t ≫ τS)

Rexp
4,CPT(∆t ≫ τS)

= 1− 8ℜδ − 8ℜx− . (4.25)

The double ratio (4.23) constitutes one of the most robust observables for our proposed

CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT violating effect,
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Figure 4. A zoom of the plots shown in figure 3 in the region 0 ≤ ∆t ≤ 20τS .
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The orthogonal pairs {K̃0,K0̄} and {K̃0̄,K0} (note the different symbols adopted in

this case with respect to K0, K̄0) constitute now the true orthogonal bases to be considered.

The effect of the ∆S ̸= ∆Q parameters x+ and x− can be easily singled out in the explicit

expressions of the observable ratios (still neglecting higher order terms in small parameters

and for not too large negative ∆t):
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Rexp
4,CPT(∆t) =

P [K̃0̄(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=
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2 ×DCPT ,

≃
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2 ∣∣∣∣1 +

(
ηππ
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− (ηℓ+)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1 + 2δ + 2x+ + 2x−|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT

= |1 + 2δ + 2x+ + 2x−|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.18)

In the limit ∆t = 0 the deviation of each ratio from unity (once DCPT is factored out)

is given by the contaminating parameters ℜϵ′3π0 , ℜϵ′ππ, and x+, and by the x− parameter,

which is explicitly CPT violating in the ∆S ̸= ∆Q decay amplitudes, and can be considered

a genuine source of CPT violation:

Rexp
2,CPT(0) =

[
1 + 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ − x−)

]
×DCPT (4.19)

Rexp
4,CPT(0) =

[
1− 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ + x−)

]
×DCPT . (4.20)

In the limit ∆t ≫ τS we get:

Rexp
2,CPT(∆t ≫ τS) = (1− 4ℜδ + 4ℜx+ − 4ℜx−)×DCPT (4.21)

Rexp
4,CPT(∆t ≫ τS) = (1 + 4ℜδ + 4ℜx+ + 4ℜx−)×DCPT . (4.22)

These results suggest the possibility of having a measurement independent of x+ and

DCPT, directly measuring the double ratio:
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Rexp
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≃ (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2 (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2

= (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
,

(4.23)

which becomes for ∆t = 0:
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= 1− 8ℜx− + 4ℜ(ϵ′3π0 − ϵ′ππ) . (4.24)

and in the limit ∆t ≫ τS :

Rexp
2,CPT(∆t ≫ τS)

Rexp
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= 1− 8ℜδ − 8ℜx− . (4.25)

The double ratio (4.23) constitutes one of the most robust observables for our proposed

CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT violating effect,
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4 Impact of the approximations on the test. Results.

In order to study the impact of the approximations involved in the proposed CPT test,

namely negligible direct CP and CPT violation contributions in the ππ and 3π0 channels,

and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect

of ϵ′ππ and ϵ′3π0 can be easily singled out in the explicit expressions of the observable ratios

(neglecting higher order terms in small parameters and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1−ϵL√

2

)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT , (4.2)

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1+ϵL√

2

)
η3π0 − e−iλL∆t

(
1+ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1+ϵS√

2

)
ηππ − e−iλL∆t

(
1+ϵL√

2

)∣∣∣
2 ×DCPT

≃ |1 + 2δ|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1 + 2δ|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT . (4.3)

It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.
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Figure 3. The expected ratios for the CPT test Rexp
2,CPT(∆t) (top) and Rexp

4,CPT(∆t) (bottom) as
a function of ∆t (solid line); dashed lines correspond to ±10% variation in the absolute value of
η3π0 , while dotted lines correspond to a ±10◦ variation of its phase (with respect to the value
η3π0 = ϵS). For visualization purposes the CPT violating parameters have been fixed to the values
ℜδ = 3.3× 10−4 and ℑδ = 1.6× 10−5.

and the x+, x− parameters defined as:

x± =
1

2

[(
A(K̄0 → ℓ+)

A(K0 → ℓ+)

)
±
(
A(K0 → ℓ−)

A(K̄0 → ℓ−)

)⋆]
, (4.13)

and corresponding to CPT-invariant and CPT-violating ∆S = ∆Q rule violation, respec-

tively.

The orthogonal partners of |K̃0⟩ and |K̃0̄⟩ states are, respectively:

|K0̄⟩ ≡ N0̄ [|KL⟩+ γ−|KS⟩] (4.14)

|K0⟩ ≡ N0 [|KL⟩+ γ+|KS⟩] (4.15)

with

γ± =
1− η⋆ℓ±⟨KS|KL⟩
η⋆ℓ± − ⟨KL|KS⟩

, (4.16)
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4 Impact of the approximations on the test. Results.

In order to study the impact of the approximations involved in the proposed CPT test,

namely negligible direct CP and CPT violation contributions in the ππ and 3π0 channels,

and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect

of ϵ′ππ and ϵ′3π0 can be easily singled out in the explicit expressions of the observable ratios

(neglecting higher order terms in small parameters and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1−ϵL√

2

)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT , (4.2)

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1+ϵL√

2

)
η3π0 − e−iλL∆t

(
1+ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1+ϵS√

2

)
ηππ − e−iλL∆t

(
1+ϵL√

2

)∣∣∣
2 ×DCPT

≃ |1 + 2δ|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1 + 2δ|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT . (4.3)

It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.
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Figure 4. A zoom of the plots shown in figure 3 in the region 0 ≤ ∆t ≤ 20τS .

and N0, N0̄ two suitable normalization factors.

The orthogonal pairs {K̃0,K0̄} and {K̃0̄,K0} (note the different symbols adopted in

this case with respect to K0, K̄0) constitute now the true orthogonal bases to be considered.

The effect of the ∆S ̸= ∆Q parameters x+ and x− can be easily singled out in the explicit

expressions of the observable ratios (still neglecting higher order terms in small parameters

and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K̃0(0) → K−(∆t)]

P [K̃−(0) → K0̄(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ−)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ−)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ−

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ−

− (ηℓ−)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.17)
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in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect
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P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
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1−ϵL√
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)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT , (4.2)

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1+ϵL√

2

)
η3π0 − e−iλL∆t

(
1+ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1+ϵS√

2

)
ηππ − e−iλL∆t

(
1+ϵL√

2

)∣∣∣
2 ×DCPT

≃ |1 + 2δ|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1 + 2δ|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT . (4.3)

It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.

– 10 –

Orthoghonal  
bases 

In general K+ and K- 
(and K0 and K0) 
can be non-orthogonal 



A. Di Domenico  KAON 2016 conference, 14 - 17  September 2016, University of Birmingham, UK 
 
 

21 

J
H
E
P
1
0
(
2
0
1
5
)
1
3
9

Rexp
4,CPT(∆t) =

P [K̃0̄(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ+)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ+)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ+

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ+

− (ηℓ+)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1 + 2δ + 2x+ + 2x−|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT

= |1 + 2δ + 2x+ + 2x−|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.18)

In the limit ∆t = 0 the deviation of each ratio from unity (once DCPT is factored out)

is given by the contaminating parameters ℜϵ′3π0 , ℜϵ′ππ, and x+, and by the x− parameter,

which is explicitly CPT violating in the ∆S ̸= ∆Q decay amplitudes, and can be considered

a genuine source of CPT violation:

Rexp
2,CPT(0) =

[
1 + 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ − x−)

]
×DCPT (4.19)

Rexp
4,CPT(0) =

[
1− 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ + x−)

]
×DCPT . (4.20)

In the limit ∆t ≫ τS we get:

Rexp
2,CPT(∆t ≫ τS) = (1− 4ℜδ + 4ℜx+ − 4ℜx−)×DCPT (4.21)

Rexp
4,CPT(∆t ≫ τS) = (1 + 4ℜδ + 4ℜx+ + 4ℜx−)×DCPT . (4.22)

These results suggest the possibility of having a measurement independent of x+ and

DCPT, directly measuring the double ratio:

Rexp
2,CPT(∆t)

Rexp
4,CPT(∆t)

≃ (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2 (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2

= (1− 8ℜδ − 8ℜx−)
∣∣∣1 + 2

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
,

(4.23)

which becomes for ∆t = 0:

Rexp
2,CPT(0)

Rexp
4,CPT(0)

= 1− 8ℜx− + 4ℜ(ϵ′3π0 − ϵ′ππ) . (4.24)

and in the limit ∆t ≫ τS :

Rexp
2,CPT(∆t ≫ τS)

Rexp
4,CPT(∆t ≫ τS)

= 1− 8ℜδ − 8ℜx− . (4.25)

The double ratio (4.23) constitutes one of the most robust observables for our proposed

CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT violating effect,
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is given by the contaminating parameters ℜϵ′3π0 , ℜϵ′ππ, and x+, and by the x− parameter,

which is explicitly CPT violating in the ∆S ̸= ∆Q decay amplitudes, and can be considered

a genuine source of CPT violation:
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[
1 + 2ℜ(ϵ′3π0 − ϵ′ππ) + 4ℜ(x+ − x−)

]
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4,CPT(0) =

[
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]
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In the limit ∆t ≫ τS we get:
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2,CPT(∆t ≫ τS) = (1− 4ℜδ + 4ℜx+ − 4ℜx−)×DCPT (4.21)

Rexp
4,CPT(∆t ≫ τS) = (1 + 4ℜδ + 4ℜx+ + 4ℜx−)×DCPT . (4.22)

These results suggest the possibility of having a measurement independent of x+ and

DCPT, directly measuring the double ratio:
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Rexp
4,CPT(∆t)
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which becomes for ∆t = 0:

Rexp
2,CPT(0)

Rexp
4,CPT(0)

= 1− 8ℜx− + 4ℜ(ϵ′3π0 − ϵ′ππ) . (4.24)

and in the limit ∆t ≫ τS :
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The double ratio (4.23) constitutes one of the most robust observables for our proposed

CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT violating effect,
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Impact of the approximations  

The double ratio constitutes one of the most robust observables for the 
proposed CPT test. In the limit ∆t ≫ τS it exhibits a pure and genuine CPT 
violating effect, even without assuming negligible contaminations from direct 
CP violation and/or ΔS=ΔQ rule violation. 
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see A. Gajos’s talk 
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Reference T -conjugate

Transition Decay products Transition Decay products

K0 � K+ (⇤�, ��) K+ � K0 (3�0, ⇤+)

K0 � K� (⇤�, 3�0) K� � K0 (��, ⇤+)

K̄0 � K+ (⇤+, ��) K+ � K̄0 (3�0, ⇤�)

K̄0 � K� (⇤+, 3�0) K� � K̄0 (��, ⇤�)

TABLE I: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 /////////////K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 /////////////K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 /////////////K̄0 � K0

K̄0 � K̄0 /////////////K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE II: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 K̄0 � K0

K̄0 � K̄0 K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE III: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.
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Reference T -conjugate

Transition Decay products Transition Decay products

K0 � K+ (⇤�, ��) K+ � K0 (3�0, ⇤+)

K0 � K� (⇤�, 3�0) K� � K0 (��, ⇤+)

K̄0 � K+ (⇤+, ��) K+ � K̄0 (3�0, ⇤�)

K̄0 � K� (⇤+, 3�0) K� � K̄0 (��, ⇤�)

TABLE I: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 /////////////K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 /////////////K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 /////////////K̄0 � K0

K̄0 � K̄0 /////////////K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE II: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 K̄0 � K0

K̄0 � K̄0 K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE III: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Conjugate= 
reference 
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Reference T -conjugate

Transition Decay products Transition Decay products

K0 � K+ (⇤�, ��) K+ � K0 (3�0, ⇤+)

K0 � K� (⇤�, 3�0) K� � K0 (��, ⇤+)

K̄0 � K+ (⇤+, ��) K+ � K̄0 (3�0, ⇤�)

K̄0 � K� (⇤+, 3�0) K� � K̄0 (��, ⇤�)

TABLE I: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 /////////////K0 � K0 K̄0 � K̄0 K̄0 � K̄0
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K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE II: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 K̄0 � K0

K̄0 � K̄0 K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE III: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Conjugate= 
reference 

already in the  
table with 
conjugate as 
reference 
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Reference T -conjugate

Transition Decay products Transition Decay products

K0 � K+ (⇤�, ��) K+ � K0 (3�0, ⇤+)

K0 � K� (⇤�, 3�0) K� � K0 (��, ⇤+)

K̄0 � K+ (⇤+, ��) K+ � K̄0 (3�0, ⇤�)

K̄0 � K� (⇤+, 3�0) K� � K̄0 (��, ⇤�)

TABLE I: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 /////////////K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 /////////////K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 /////////////K̄0 � K0

K̄0 � K̄0 /////////////K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE II: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 K̄0 � K0

K̄0 � K̄0 K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE III: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Conjugate= 
reference 

Two identical 
conjugates 
for one reference 

already in the  
table with 
conjugate as 
reference 
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Reference T -conjugate

Transition Decay products Transition Decay products

K0 � K+ (⇤�, ��) K+ � K0 (3�0, ⇤+)

K0 � K� (⇤�, 3�0) K� � K0 (��, ⇤+)

K̄0 � K+ (⇤+, ��) K+ � K̄0 (3�0, ⇤�)

K̄0 � K� (⇤+, 3�0) K� � K̄0 (��, ⇤�)

TABLE I: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 /////////////K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 /////////////K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 /////////////K̄0 � K0

K̄0 � K̄0 /////////////K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE II: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Reference T -conjugate CP -conjugate CPT -conjugate

K0 � K0 K0 � K0 K̄0 � K̄0 K̄0 � K̄0

K0 � K̄0 K̄0 � K0 K̄0 � K0 K0 � K̄0

K0 � K+ K+ � K0 K̄0 � K+ K+ � K̄0

K0 � K� K� � K0 K̄0 � K� K� � K̄0

K̄0 � K0 K0 � K̄0 K0 � K̄0 K̄0 � K0

K̄0 � K̄0 K̄0 � K̄0 K0 � K0 K0 � K0

K̄0 � K+ K+ � K̄0 K0 � K+ K+ � K0

K̄0 � K� K� � K̄0 K0 � K� K� � K0

K+ � K0 K0 � K+ K+ � K̄0 K̄0 � K+

K+ � K̄0 K̄0 � K+ K+ � K0 K0 � K+

K+ � K+ K+ � K+ K+ � K+ K+ � K+

K+ � K� K� � K+ K+ � K� K� � K+

K� � K0 K0 � K� K� � K̄0 K̄0 � K�
K� � K̄0 K̄0 � K� K� � K0 K0 � K�
K� � K+ K+ � K� K� � K+ K+ � K�
K� � K� K� � K� K� � K� K� � K�

TABLE III: Possible comparisons between T -conjugated transitions and the associated time-ordered decay
products in the experimental ⇥-factory scheme.

Conjugate= 
reference 

Two identical 
conjugates 
for one reference 

already in the  
table with 
conjugate as 
reference 

Direct test of symmetries with neutral kaons  

4 distinct tests 
of T symmetry 

4 distinct tests 
of CP symmetry 

4 distinct tests 
of CPT symmetry 
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Direct test of Time Reversal symmetry with neutral kaons  

Any deviation from Ri=1 constitutes a violation of T-symmetry 

One can define the following ratios of probabilities: 

T symmetry test 

J. Bernabeu, A.D.D., P. Villanueva: NPB 868 (2013) 102 
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1 Notes 18 August 2015 modified for talk at Krakow discrete symmetries

meeting 10 June 2017

R

exp

2,T (�t) ⌘ I(`�, 3⇡0;�t)

I(⇡⇡, `+;�t)
(1.1)

R

exp

4,T (�t) ⌘ I(`+, 3⇡0;�t)

I(⇡⇡, `�;�t)
(1.2)

R

exp

2,CP(�t) ⌘ I(`�, 3⇡0;�t)

I(`+, 3⇡0;�t)
(1.3)

R

exp

4,CP(�t) ⌘ I(⇡⇡, `+;�t)

I(⇡⇡, `�;�t)
(1.4)

Now I made the calculations taking into account both "✏0" and �S 6= �Q effects. Here
they are:

R

exp

2,CPT (�t) =
P [eK

0

(0) ! K�(�t)]

P [eK�(0) ! K
¯

0

(�t)]
⇥DCPT

= (1� 4<� + 4<x
+

� 4<x�)
���1 +

�
2� + ✏

0
3⇡0 � ✏

0
⇡⇡

�
e

�i(�S��L)�t
���
2

⇥DCPT ,

(1.5)

R

exp

4,CPT (�t) =
P [eK

¯

0

(0) ! K�(�t)]

P [eK�(0) ! K
0

(�t)]
⇥DCPT

= (1 + 4<� + 4<x
+

+ 4<x�)
���1�

�
2� + ✏

0
3⇡0 � ✏

0
⇡⇡

�
e

�i(�S��L)�t
���
2

⇥DCPT ,

(1.6)

R

exp

2,T (�t) =
P [eK

0

(0) ! K�(�t)]

P [eK�(0) ! K
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(�t)]
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1

Two observable 
ratios of double 
decay intensities 
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Explicitly in standard 
Wigner Weisskopf  
approach 
for Δt>0: R

exp

2,T (�t) =
P [K0(0) ! K�(�t)]

P [K�(0) ! K0(�t)]
⇥DT ,2

= (1� 4<✏)
���1 + 2✏e�i(�S��L)�t

���
2

⇥DCPT ,

(1.9)

R

exp

4,T (�t) =
P [K̄0(0) ! K�(�t)]

P [K�(0) ! K̄0(�t)]
⇥DT ,4

= (1 + 4<✏)
���1� 2✏e�i(�S��L)�t

���
2

⇥DCPT ,

(1.10)

R

exp

2,CP(�t) =
P [eK

0
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exp
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P [eK�(0) ! K
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(1.12)

where I considered also the following relations among the constant terms:

DT ,2 = (1 + 4<y)⇥DCPT (1.13)
DT ,4 = (1� 4<y)⇥DCPT (1.14)
DCP,2 = (1 + 4<y) (1.15)
DCP,4 = (1� 4<y) (1.16)

and I remind you that the semileptonic decay amplitudes are parametrized as follows:

h`+|T |K0i = a+ b , h`�|T |K̄0i = a

⇤ � b

⇤

h`�|T |K0i = c+ d , h`+|T |K̄0i = c

⇤ � d

⇤ (1.17)

where a, b, c, d are complex quantities; CPT invariance implies b = d = 0, �S = �Q rule
implies c = d = 0, T invariance implies =a = =b = =c = =d = 0, while CP invariance
implies =a = <b = =c = <d = 0. The three measurable parameters are defined as:

y = �b/a , x

+

= c

⇤
/a , x� = �d

⇤
/a ; (1.18)

2
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Impact of the approximations  

Explicitly for Δt>0: 

J
H
E
P
1
0
(
2
0
1
5
)
1
3
9

4 Impact of the approximations on the test. Results.

In order to study the impact of the approximations involved in the proposed CPT test,

namely negligible direct CP and CPT violation contributions in the ππ and 3π0 channels,

and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect

of ϵ′ππ and ϵ′3π0 can be easily singled out in the explicit expressions of the observable ratios

(neglecting higher order terms in small parameters and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1−ϵL√

2

)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT , (4.2)

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1+ϵL√

2

)
η3π0 − e−iλL∆t

(
1+ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1+ϵS√

2

)
ηππ − e−iλL∆t

(
1+ϵL√

2

)∣∣∣
2 ×DCPT

≃ |1 + 2δ|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1 + 2δ|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT . (4.3)

It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.
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Figure 3. The expected ratios for the CPT test Rexp
2,CPT(∆t) (top) and Rexp

4,CPT(∆t) (bottom) as
a function of ∆t (solid line); dashed lines correspond to ±10% variation in the absolute value of
η3π0 , while dotted lines correspond to a ±10◦ variation of its phase (with respect to the value
η3π0 = ϵS). For visualization purposes the CPT violating parameters have been fixed to the values
ℜδ = 3.3× 10−4 and ℑδ = 1.6× 10−5.

and the x+, x− parameters defined as:

x± =
1

2

[(
A(K̄0 → ℓ+)

A(K0 → ℓ+)

)
±
(
A(K0 → ℓ−)

A(K̄0 → ℓ−)

)⋆]
, (4.13)

and corresponding to CPT-invariant and CPT-violating ∆S = ∆Q rule violation, respec-

tively.

The orthogonal partners of |K̃0⟩ and |K̃0̄⟩ states are, respectively:

|K0̄⟩ ≡ N0̄ [|KL⟩+ γ−|KS⟩] (4.14)

|K0⟩ ≡ N0 [|KL⟩+ γ+|KS⟩] (4.15)

with

γ± =
1− η⋆ℓ±⟨KS|KL⟩
η⋆ℓ± − ⟨KL|KS⟩

, (4.16)

– 12 –

CPT cons. and CPT viol. 
ΔS=ΔQ violation 

Direct CP (CPT) violation 

JHEP10(2015)139

4 Impact of the approximations on the test. Results.

In order to study the impact of the approximations involved in the proposed CPT test,

namely negligible direct CP and CPT violation contributions in the ππ and 3π0 channels,

and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect

of ϵ′ππ and ϵ′3π0 can be easily singled out in the explicit expressions of the observable ratios

(neglecting higher order terms in small parameters and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K0(0) → K−(∆t)]

P [K̃−(0) → K̄0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1−ϵL√

2

)
η3π0 + e−iλL∆t

(
1−ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1−ϵS√

2

)
ηππ + e−iλL∆t

(
1−ϵL√

2

)∣∣∣
2 ×DCPT ,

≃ |1− 2δ|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT , (4.2)

Rexp
4,CPT(∆t) =

P [K̄0(0) → K−(∆t)]

P [K̃−(0) → K0(∆t)]
×DCPT

=

∣∣∣e−iλS∆t
(
1+ϵL√

2

)
η3π0 − e−iλL∆t

(
1+ϵS√

2

)∣∣∣
2

∣∣∣e−iλS∆t
(
1+ϵS√

2

)
ηππ − e−iλL∆t

(
1+ϵL√

2

)∣∣∣
2 ×DCPT

≃ |1 + 2δ|2
∣∣∣1− (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1 + 2δ|2
∣∣∣1−

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT . (4.3)

It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.
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Figure 4. A zoom of the plots shown in figure 3 in the region 0 ≤ ∆t ≤ 20τS .

and N0, N0̄ two suitable normalization factors.

The orthogonal pairs {K̃0,K0̄} and {K̃0̄,K0} (note the different symbols adopted in

this case with respect to K0, K̄0) constitute now the true orthogonal bases to be considered.

The effect of the ∆S ̸= ∆Q parameters x+ and x− can be easily singled out in the explicit

expressions of the observable ratios (still neglecting higher order terms in small parameters

and for not too large negative ∆t):

Rexp
2,CPT(∆t) =

P [K̃0(0) → K−(∆t)]

P [K̃−(0) → K0̄(∆t)]
×DCPT

=

∣∣e−iλS∆t(ηℓ−)(η3π0)− e−iλL∆t
∣∣2

|e−iλS∆t(ηππ)− e−iλL∆t(ηℓ−)|
2 ×DCPT ,

≃
∣∣∣∣
1

ηℓ−

∣∣∣∣
2 ∣∣∣∣1 +

(
ηππ
ηℓ−

− (ηℓ−)(η3π0)

)
e−i(λS−λL)∆t

∣∣∣∣
2

×DCPT ,

≃ |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 + (η3π0 − ηππ) e

−i(λS−λL)∆t
∣∣∣
2
×DCPT ,

= |1− 2δ + 2x⋆+ − 2x⋆−|2
∣∣∣1 +

(
2δ + ϵ′3π0 − ϵ′ππ

)
e−i(λS−λL)∆t

∣∣∣
2
×DCPT ,

(4.17)
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In order to study the impact of the approximations involved in the proposed CPT test,

namely negligible direct CP and CPT violation contributions in the ππ and 3π0 channels,

and the validity of the ∆S = ∆Q rule, they are treated separately.

First, the effect of possible direct CP and CPT violation contributions is evaluated on

the observable ratios Rexp
i,CPT(∆t), while still assuming the ∆S = ∆Q rule. To this aim the

following parametrisation is introduced:

ηππ = ϵL + ϵ′ππ

η3π0 = ϵS + ϵ′3π0 , (4.1)

where ϵ′ππ and ϵ′3π0 represent the generic contributions of direct CP and/or CPT violation

in the ππ and 3π0 channels, respectively. In this more general case, the orthogonality

condition eqs. (2.12) is no more satisfied, and the true orthogonal pair to be considered in

writing the initial state (3.1) is {K+, K̃−} (or {K̃+,K−}) instead of {K+,K−}. The effect

of ϵ′ππ and ϵ′3π0 can be easily singled out in the explicit expressions of the observable ratios

(neglecting higher order terms in small parameters and for not too large negative ∆t):
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∣∣∣
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)
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∣∣∣
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=
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(
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∣∣∣
2
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It is important to realise from eqs. (4.2) and (4.3) that there exists a sum rule for ∆t ! 0

given by:

Rexp
2,CPT(∆t) +Rexp

4,CPT(∆t) = 2DCPT , (4.4)

indicating that the quantity DCPT is measurable within the same experiment.
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Fig. 6. The expected ratios R
exp
2 (!t) (top) and R

exp
4 (!t) (bottom) as a function of !t (solid line); dashed lines corre-

spond to ±10% variation in the absolute value of (η−1
3π0 ), while dotted lines correspond to a ±10◦ variation of its phase

(with respect to the expected value, i.e. (η−1
3π0 ) ≃ ϵS ≃ ϵ). The value of |⟨3π0|T |KL⟩|2 has been kept fixed while varying

(η−1
3π0 ).

of ϵ′
000 enhanced in magnitude by a large safety factor (of order one hundred) with respect to the

Chiral Perturbation Theory prediction. We checked that even in this extreme case the significance
of the proposed T test is not spoiled. This can be seen in Figs. 6 and 7, where the impact on the
measurable ratios R

exp
i (!t) of a variation of ±10% in the absolute value of (η−1

3π0), or of ±10◦

in its phase (with respect to the expected value, i.e. (η−1
3π0) ≃ ϵS ≃ ϵ) is shown. T violation is

still evident and not significantly affected, especially in the !t region statistically relevant for
the KLOE-2 experiment at DA%NE, i.e. !t � −5 τS .5

Thus one can conclude that direct CP violation can be safely neglected in the T symmetry
test.

Concerning the CP symmetry test summarized in Table 2, similar conclusions can be drawn.

5 Obviously the quantity |⟨3π0|T |KL⟩|2 = ΓL · BR(KL → 3π0) has been kept fixed to its present measured value [6]

while varying (η−1
3π0 ). For the impact of its experimental uncertainty on the T symmetry test, see discussion in para-

graph 4 about the normalization constant D.

Modifications due to direct CP violation effects (unrealistically amplified ~x100) 

R2,T 
EXP  / DCPT 

R4, T 
EXP  / DCPT 

plots with CPV 
Reε and Imε
values 
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T invariance 

T invariance 

0.7% violation 

0.7% violation 

R2(Δt>>τS)=1-4Re(ε) ∼  0.993 
R4(Δt>>τS)=1+4Re(ε) ∼ 1.007
 

Direct test of Time Reversal symmetry with neutral kaons  

 measurable  
 at KLOE-2 

see A. Gajos’s talk 

plots with CPV 
Reε and Imε
values 
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•  It is possible to directly test T and CPT in transition processes for the first time between 
neutral kaon states. 

•  Maximal entanglement of the initial state is assumed (impact of possible loss of 
coherence => ω effect; stringent limits measured at KLOE). 

•  KLOE data analysis ongoing (see A. Gajos’s talk); KLOE-2 could reach a statistical 
sensitivity of O(10−3) on these new observables. 

•  In B meson system similar tests (see Bevan’s talk);  
CPT test: 
•  The proposed CPT test is model independent and fully robust. (It can then be translated in 

terms of δ, α, β, γ, Δaµ  etc..).  
•  In standard WWA the test is related to Reδ, a genuine CPT violating effect independent of 
∆Γ and not requiring the decay as an essential ingredient.  

•  VERY CLEAN TEST. Possible spurious effects induced by CP violation in the decay and/
or a violation of the ∆S = ∆Q rule have been shown to be well under control. 

•  There exists a connection with charge semileptonic asymmetries of KS and KL 
T test: 
•  It is possible to perform a direct test of the time reversal symmetry, independently from CP 

violation and CPT invariance constraints. 
•  Clean test, no impact of direct CPV; ∆S = ∆Q and no CPT viol. in semilep.decay assumed. 
•  The constant DCPT needs to be measured with ~ 0.1% precision. 
•  in the “plateau” region effect proportional to Re(ε), not independent of ∆Γ.

Conclusions 


