

Lorentz and CPT tests with Positronium

Precision spectroscopy of the 1s-2s and excited state hyperfine transitions

CPT – Invariance

- Every quantum field theory respecting
 - Lorentz-Invariance
 - Locality
 - Unitarity

J. Schwinger, Phys. Rev. 82 (1951) 914.

W. Pauli, p. 30 in W. Pauli, ed., Niels Bohr and the Development of Physics, McGraw-Hill, New York, 1955.

CPT – Invariance

- Every quantum field theory respecting
 - Lorentz-Invariance
 - Locality
 - Unitarity
 - is invariant under the combined transformations
 - C charge (changes sign of all charges)
 - P parity (spatial mirroring)
 - T time (time reversal)

- J. Schwinger, Phys. Rev. 82 (1951) 914.
- W. Pauli, p. 30 in W. Pauli, ed., Niels Bohr and the Development of Physics, McGraw-Hill, New York, 1955.

CPT – Invariance

- Every quantum field theory respecting
 - Lorentz-Invariance
 - Locality
 - Unitarity
 - is invariant under the combined transformations
 - C charge (changes sign of all charges)
 - P parity (spatial mirroring)
 - T time (time reversal)

However, can there still be CPT violations?

- J. Schwinger, Phys. Rev. 82 (1951) 914.
- W. Pauli, p. 30 in W. Pauli, ed., Niels Bohr and the Development of Physics, McGraw-Hill, New York, 1955.

CPT – Violation

• CPT can be naturally broken (e.g. in string theory)

Colladay, D., & Kostelecký, V. A. (1997). CPT violation and the standard model. Phys. Rev. D, 55(11), 6760-6774.

CPT – Violation

- CPT can be naturally broken (e.g. in string theory)
- Breaks Lorentz symmetry

Colladay, D., & Kostelecký, V. A. (1997). CPT violation and the standard model. Phys. Rev. D, 55(11), 6760-6774.

CPT – Violation

- CPT can be naturally broken (e.g. in string theory)
- Breaks Lorentz symmetry
- Can be well described at low energy scales as effective field theory: Standard Model Extension (SME)
 - built from General Relativity and the Standard Model
 - includes Lorentz- and CPT violating operators
 - up to mass dimension 4 (minimal SME) and above
 - coefficients have to be determined experimentally

Colladay, D., & Kostelecký, V. A. (1997). CPT violation and the standard model. Phys. Rev. D, 55(11), 6760-6774.

CPT tests in different systems

• Adapted from: E. Widmann et al., Hyperfine Interact. 215, 1 (2013).

Spectroscopy and the minimal SME

Minimal SME terms can produce striking effects, e.g.

- Kostelecký, V. A.; Vargas, A. J. (2015). Lorentz and CPT tests with hydrogen, antihydrogen, and related systems. Phys. Rev. D 92, 056002.
- Adkins, G.S., arXiv:1007.3909.

Spectroscopy and the minimal SME

- Minimal SME terms can produce striking effects, e.g.
 - Hydrogen sector
 - time dependent shifts in hydrogen spectra (e.g. annual shifts)
 - different hydrogen and anti-hydrogen spectra

- Kostelecký, V. A.; Vargas, A. J. (2015). Lorentz and CPT tests with hydrogen, antihydrogen, and related systems. Phys. Rev. D 92, 056002.
- Adkins, G.S., arXiv:1007.3909.

Spectroscopy and the minimal SME

- Minimal SME terms can produce striking effects, e.g.
 - Hydrogen sector
 - time dependent shifts in hydrogen spectra (e.g. annual shifts)
 - different hydrogen and anti-hydrogen spectra
 - Positronium sector
 - SM forbidden momentum-polarization correlations in Positronium decay
 - shifts in Positronium spectra from Lorentz-invariant values
 - 1s-2s transition
 - hyperfine splitting

- Kostelecký, V. A.; Vargas, A. J. (2015). Lorentz and CPT tests with hydrogen, antihydrogen, and related systems. Phys. Rev. D 92, 056002.
- Adkins, G.S., arXiv:1007.3909.

Positronium Spectroscopy

- Ps is purely leptonic system
- Free from
 - QCD effects
 - weak force effects

Positronium Spectroscopy

- Ps is purely leptonic system
- Free from
 - QCD effects
 - weak force effects
- Precision test bench for
 - bound state QED

ETH zürich

ETH slow positron beamlines

Continous beam (since 2012)

Pulsed beam (since 2015)

Positronium formation

- Implantation in porous silica thin film
 - approx. 1 µm thick, 3-4 nm pore size
 - e⁺ energy of a few keV
 - rapid thermalization

 e^+

Positronium formation

- Implantation in porous silica thin film
 - approx. 1 µm thick, 3-4 nm pore size
 - e⁺ energy of a few keV
 - rapid thermalization
- Diffuse and annihilate

 e^+

Positronium formation

- Implantation in porous silica thin film
 - approx. 1 µm thick, 3-4 nm pore size
 - e⁺ energy of a few keV
 - rapid thermalization
- Diffuse and annihilate
- Form Positronium by capturing e⁻
 - 25% pPs and 75% oPs
 - diffusion to surface
 - emission into vacuum
 - $W_{Ps} = \mu_{Ps} + E_B 6.8 \text{ eV} < 0 \text{ eV}$

Positronium emission into vacuum

- Very efficient
 - ≈ 30% of incident e⁺ produce oPs into vacuum
- Almost monoenergetic
 - ≈ 40 meV (≈ 10⁵ m/s!)

Positronium emission into vacuum

- Very efficient
 - ≈ 30% of incident e⁺ produce oPs into vacuum
- Almost monoenergetic
 - ≈ 40 meV (≈ 10⁵ m/s!)
 - deBroglie wavelength of Ps:

•
$$\lambda_{Ps} = \frac{h}{\sqrt{2 m_{Ps} E_{Ps}}} \approx 0.9 nm \sqrt{\frac{1 eV}{E_{Ps}}}$$

• for ≈100 meV this becomes comparable to pore size!

P. Crivelli et al., Phys. Rev. A. 81, 052703 (2010).

Positronium emission into vacuum

- Very efficient
 - ≈ 30% of incident e⁺ produce oPs into vacuum
- Almost monoenergetic
 - ≈ 40 meV (≈ 10⁵ m/s!)
 - deBroglie wavelength of Ps:

•
$$\lambda_{PS} = \frac{h}{\sqrt{2 m_{PS} E_{PS}}} \approx 0.9 nm \sqrt{\frac{1 eV}{E_{PS}}}$$

- for ≈100 meV this becomes comparable to pore size!
- particle in a box

•
$$E_{Ps} = \frac{h^2}{2 m d^2} \approx 0.8 eV \left(\frac{1 n m}{d}\right)^2$$

Ps 1s-2s: transition frequency

Ps 1s-2s: transition frequency

Ps 1s-2s: laser system

Requirements:

- High power (up to 1 kW) at 486 nm \rightarrow detectable signal
- Long term stability (continuous data taking over days)
- Scanning of the laser ≈ 100 MHz

Ps 1s-2s: laser system

Requirements:

- High power (up to 1 kW) at 486 nm \rightarrow detectable signal
- Long term stability (continuous data taking over days)
- Scanning of the laser ≈ 100 MHz

Ps 1s-2s: laser system

Requirements:

- High power (up to 1 kW) at 486 nm \rightarrow detectable signal
- Long term stability (continuous data taking over days)
- Scanning of the laser ≈ 100 MHz

High finesse resonator for power build up 500 mW > 1 kW

Ps 1s-2s: detection scheme

Ps 1s-2s: detection scheme

Detection of annihilation photons. Lifetime of excited S states $\sim n^3$

Ps 1s-2s: detection scheme

Ps 1s-2s: preliminary results (2014)

First successful scans (about 3 hours data taking, ~ 10⁶ positronium atoms/point)

 \Rightarrow S/N ratio should be improved.

D.Cooke et al, Hyperfine Interact. 233 (2015) 1-3, 67.

Ps 1s-2s: preliminary results (2014)

First successful scans (about 3 hours data taking, ~ 10⁶ positronium atoms/point)

 \Rightarrow S/N ratio should be improved.

Need for a bunched beam \rightarrow use buffer gas trap

 \rightarrow noise from accidentals reduced by 2 orders of magnitude

 \rightarrow In addition to lifetime method possibility to use pulsed lasers for systematic studies and increased signal rate

D.Cooke et al, Hyperfine Interact. 233 (2015) 1-3, 67.

Ps 1s-2s: New detection scheme

Ps 1s-2s: New detection scheme

 \rightarrow Excitation 2S atoms to Rydberg states (n=20) \rightarrow time-of-flight measurement of 2S atoms using position sensitive MCP detector to correct for 2nd order Doppler shift.

 \rightarrow Increase in the S/N ratio by two orders of magnitude.

 \rightarrow Extraction to a field free e-m region \rightarrow removal of systematic due to DC Stark and Zeeman (affecting m=0 triplet states) and motional Stark shift.

Ps 1s-2s: Status, outlook

Status

- pulsed beam operational
- enhancement cavity installed and locked
- new detection scheme is currently being tested with pulsed dye amplifier (486nm & 730nm)

Ps 1s-2s: Status, outlook

Status

- pulsed beam operational
- enhancement cavity installed and locked
- new detection scheme is currently being tested with pulsed dye amplifier (468nm & 730nm)
- Outlook
 - precision of 0.5 ppb seems feasible \rightarrow stringent test of current QED calculations
 - more precise measurements requires cold Positronium (< 10⁴ m/s)
 - time-of-flight broadening comparable to natural linewidth (1.2 MHz)
 - main systematic (2nd order doppler effect) suppressed by 2 orders of magnitude
 - a few ppt precision might be in reach
 - would allow independent determination of rydberg constant

Ps HFS: Additional Motivation

- Very precise measurements in 1970s and 1980s
- Almost 4 sigma discrepancy with most recent QED result
- Two common sources of possible systematics identified:
 - indirect measurement
 - conducted in dense gases

• A. Ishida et al. New Precision Measurement of Hyperfine Splitting of Positronium. *Phys. Rev. Lett. B*, 734:338–344, June 2014.

Ps HFS: Indirect measurements

- In a static magnetic field:
 - antiparallel spin states pick up ΔE
 - The | 1,0 > state mixes with the | 0,0 > state
 - magnetic quenching
- One can induce transitions between different m_Z 's instead of different J's
- Compare: $\Delta_{mix} \approx 4 \; GHz \; (at \; 1 \; T)$ vs. $\Delta_{HFS} \approx 203 \; GHz$

EHzürich

Ps HFS: Indirect measurements

- one calculates Δ_{HFS} from:
 - $\Delta_{\text{mix}} \approx 0.5 \cdot \Delta_{\text{HFS}} \left(\sqrt{1+q^2} 1 \right)$
 - where: $q \propto \frac{B}{\Delta_{\rm HFS}}$
- needs very high B-Fields (~ 1 T)
- Disadvantages
 - some theoretical uncertainty
 - inhomogeneities in the fields contribute directly to systematic errors

Ps HFS: Mesurements in dense gases

- In dense gases
 - gas acts as e⁺ target
 - e⁺ can ionize a gas atom
 - e^+ picks up the e^- and forms Ps
- Advantage: no need for a beam

• A. Ishida et al. New Precision Measurement of Hyperfine Splitting of Positronium. *Phys. Rev. Lett. B*, 734:338–344, June 2014.

Ps HFS: Mesurements in dense gases

- In dense gases
 - gas acts as e⁺ target
 - e⁺ can ionize a gas atom
 - e^+ picks up the e^- and forms Ps
- Advantage: no need for a beam
- Disadvantages:
 - E field of gas atoms → Stark effect
 - Needs extrapolation to vacuum
 - Uncertainties in the Ps thermalization
 - High MW powers can strongly interfere with Ps production in gases

• A. Ishida et al. New Precision Measurement of Hyperfine Splitting of Positronium. *Phys. Rev. Lett. B*, 734:338–344, June 2014.

ETH zürich

Ps HFS: New technique avoiding systematic sources

- Transition in vacuum
 - no extrapolation necessary
 - need a beam
 - need different converter

$$1^{3}S_{1}$$

Microwave 3γ (τ = 142 ns)
203 GHz
 2γ (τ = 124 ps)

EHzürich

Ps HFS: New technique avoiding systematic sources

- Transition in vacuum
 - no extrapolation necessary
 - need a beam
 - need different converter
- Direct transition
 - no theoretical uncertainty
 - needs no static B field
 - need 486nm laser
- Commercially available
 - Signal Generators: 200mW
 - TWT Amplifiers: 100's of W

ETH zürich

Ps HFS: 2s Laser excitation

Pulsed laser setup

Ps HFS: 2s Laser excitation

- Pulsed laser setup
- Multi-purpose system
 - HFS spectroscopy
 - 1s-2s spectroscopy
 - Rydberg excitation

Ps HFS: 2s Laser excitation

- Pulsed laser setup
- Multi-purpose system
 - HFS spectroscopy
 - 1s-2s spectroscopy
 - Rydberg excitation
- Simulation
 - \approx 1% of Ps available for HFS
 - limited by
 - photoionization
 - oscillation back to ground state

Ps HFS: Microwave system

- Confocal resonator @ 25.4 GHz
 - two spherical mirrors
 - impedence matched coupling hole
 - waveguide signal feed (TWT amplified)

Ps HFS: Microwave system

- Confocal resonator @ 25.4 GHz
 - two spherical mirrors
 - impedence matched coupling hole
 - waveguide signal feed (TWT amplified)
- Quality factor: $Q \approx 50000$
 - $Q = \frac{v_0}{\Delta v}$ • $Q = 2\pi \frac{\text{energy stored}}{\text{energy lost by cycle}}$

Ps HFS: Microwave system

- Confocal resonator @ 25.4 GHz
 - two spherical mirrors
 - impedence matched coupling hole
 - waveguide signal feed (TWT amplified)
- Quality factor: $Q \approx 50000$
 - $Q = \frac{\nu_0}{\Delta \nu}$ • $Q = 2\pi \frac{\text{energy stored}}{\text{energy lost by cycle}}$
- Simulation
 - HFS transition probability $\approx 3.5\%$

- Experimental signature (pPs decay)
 - 2 matching back-to-back 511 keV photons
 - temporal coincidence in opposite detector modules
 - intersection of connecting line with target region
 - energy cut

- Experimental signature (pPs decay)
 - 2 matching back-to-back 511 keV photons
 - temporal coincidence in opposite detector modules
 - intersection of connecting line with target region
 - energy cut
- Dominant background (oPs decay)

 $m_{Ps} = 1022 \ keV$ $\Sigma E_{\gamma} = 1022 \ keV$

- Experimental signature (pPs decay)
 - 2 matching back-to-back 511 keV photons
 - temporal coincidence in opposite detector modules
 - intersection of connecting line with target region
 - energy cut
- Dominant background (oPs decay)
 - misidentification of 3 photon decays as 2 photon decays
 - very small angle between 2 of the 3 photons

- Experimental signature (pPs decay)
 - 2 matching back-to-back 511 keV photons
 - temporal coincidence in opposite detector modules
 - intersection of connecting line with target region
 - energy cut
- Dominant background (oPs decay)
 - misidentification of 3 photon decays as 2 photon decays
 - very small angle between 2 of the 3 photons
 - one photon very soft

Experimental signature (pPs decay)

- 2 matching back-to-back 511 keV photons
 - temporal coincidence in opposite detector modules
 - intersection of connecting line with target region
 - energy cut
- Dominant background (oPs decay)
 - misidentification of 3 photon decays as 2 photon decays
 - very small angle between 2 of the 3 photons
 - one photon very soft
- Ground state positronium
 - removed by time of flight (separation of converter and cavity)

Ps HFS: Detector – AxPET

AxPET demonstrator

- provided by ETH group of Prof. Dissertori
- very good temporal and spatial resolution
- 6 layers per module
- 8 LYSO crystals
- 26 wavelength shifters
- 204 MPPC & bias voltage supply channels
- Reinstrumentation necessary
 - noise reduction
 - new DAQ
 - PETsys TOFPET2

Beltrame et al., The AX-PET demonstrator – Design, construction and characterization. 2011.

Ps HFS: Simulation results

Simulation

- average rate of 4x10⁵ e⁺/s
- 30% Ps conversion efficiency
- optimization for S/N
 - ~3% detection efficiency
 - 1 misidentified oPs event for ~40 signal events

EHzürich

Ps HFS: Simulation results

- Simulation
 - average rate of 4x10⁵ e⁺/s
 - 30% Ps conversion efficiency
- optimization for S/N
 - ~3% detection efficiency
 - 1 misidentified oPs event for ~40 signal events
- projected sensitivity:
 - ± 5 ppm (stat)
 - ppm level systematics

Ps HFS: Status, outlook

Status

- 2s excitation is currently being tested with pulsed dye amplifier
- microwave cavity succesfully tested
- detector reinstrumentation in progress

Ps HFS: Status, outlook

Status

- 2s excitation is currently being tested with pulsed dye amplifier
- microwave cavity succesfully tested
- detector reinstrumentation in progress
- Outlook
 - precision of a few ppm should be achievable \rightarrow resolve discrepancy with bound state QED
 - more precise measurements feasible
 - LN2 cooling of resonator (increase Q factor significantly)
 - increase MW power (TWT amplifier)
 - improved event analysis (pattern recognition, e.g. neural net)
 - limited by systematic uncertainties

ETH zürich

Thank you for your attention

Backup Slides

Positronium Spectroscopy

- Ps is purely leptonic system
- Free from
 - QCD effects (well, almost)
 - weak force effects
- Precision test bench for
 - bound state QED

Positronium Spectroscopy

- Ps is purely leptonic system
- Free from
 - QCD effects (well, almost)
 - weak force effects
- Precision test bench for
 - bound state QED

Positronium Spectroscopy

- Ps is purely leptonic system
- Free from
 - QCD effects (well, almost)
 - weak force effects
- Precision test bench for
 - bound state QED

Positron production

- Positrons produced in β⁺ decay of ²²Na
 - $^{22}Na \rightarrow ^{22}Ne^* + \nu_e + e^+$
 - continous spectrum: 0 543 keV
 - moderate half-life: τ_{1/2} = 2.6a
 - $^{22}Ne^* \rightarrow ^{22}Ne + \gamma$
 - discrete energy: 1.27 MeV
 - almost immediate process: 3.7 ps delay
 - can be used to tag β⁺ decay of ²²Na
- Need for moderate rate sources
 - CW beam: 300 MBq
 - Pulsed beam: 350 MBq

Positron production

- Positrons produced in β⁺ decay of ²²Na
 - $^{22}Na \rightarrow ^{22}Ne^* + \nu_e + e^+$
 - continous spectrum: 0 543 keV
 - moderate half-life: τ_{1/2} = 2.6a
 - $^{22}Ne^* \rightarrow ^{22}Ne + \gamma$
 - discrete energy: 1.27 MeV
 - almost immediate process: 3.7 ps delay
 - can be used to tag β⁺ decay of ²²Na
- Need for moderate rate sources
 - CW beam: 300 MBq
 - Pulsed beam: 350 MBq
- Need moderation: solid rare gas moderator

Positron moderation

- Large energy spread: use moderation
- Solid rare gas moderation
 - 4K cold head
 - tungsten allow shield

Positron moderation

- Large energy spread: use moderation
- Solid rare gas moderation
 - 4K cold head
 - tungsten allow shield
 - ²²Na in capsule with
 5µm titanium window

Positron moderation

- Large energy spread: use moderation
- Solid rare gas moderation
 - 4K cold head
 - tungsten allow shield
 - ²²Na in capsule with
 5µm titanium window
 - solid neon film is grown
 - e⁺ loses energy only inefficiently below band gap (≈20eV)
 - large fraction of e⁺ is emitted into vacuum with epithermal energies

Transportation of slow positrons

- Positrons follow magnetic field lines
- quasi-uniform longitudinal field of 70 Gauss

ETH zürich

Ps 1s-2s: enhancement cavity

ETH zürich

Ps 1s-2s: enhancement cavity

At 0.4 MW/cm² (0.7 kW circulating power) mirror degradation observed.

Run @ 0.4-0.5 kW: -> Excitation prob ~ 1x10⁻⁴ -> Resonant 3γ PI ~ 1x10⁻⁵ Generation of 500 W, no degradation over hours of continuous operation.

Ps 1s-2s: buffer gas trap

Ps 1s-2s: buffer gas trap

Ps 1s-2s: positron bunching and extraction

extracted to the field free e-m region with 90 % efficiency.

D. A. Cooke G., Barandun, S Vergani, B Brown, A Rubbia and P Crivelli, J. Phys. B: At. Mol. Opt. Phys. 49 014001 (2016).

Ps HFS: Review - First direct measurement

- Notoriously difficult ($\Delta v = 203 \ GHz$)
 - no off-the-shelf sources
 - no off-the-shelf resonators
 - behavior somewhat between microwave and light
- Multiple resonators required
 - need to be changed for every frequency point
- Needs very high MW power
 - very rudimentary power estimation
 - measured the heat absorbed by water

A. Miyazaki et al. First millimeter-wave spectroscopy of ground-state positronium. Progress of Theoretical and Experimental Physics, 2015(1), 2015.