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A layman’s view



1 A quick view at orthopositronium: matrix element,
kinematics, distributions etc.

2 Three photon entanglement from orthopositronium
GHZ versus the W-class
classification according to spin projection
use of the full phase space circular, linear and
linear transverse/parallel polarizations

3 Correlations (iconoclastic )
The two level formalism in two dimensions versus
two level formalism in three dimensions (photon )

4 Clauser-Horne-Shimony inequalities for three
photons

Motivation: An interplay between relativistic
dynamics and kinematics and quantum
entanglement



Not to forget: The CRACOW J-PET where apart

from medical applications a study of the three

photon entanglement from positronium could
be done.
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Figure 1: Positron electron tomography uses also
photons from positronium (Cracow J-PET)



Figure 2: “A 4x coverage” of the photons (Cracow

J-PET)
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Figure 3: A purely leptonic hydrogen-like atom
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Figure 4: Decays into two or three photons
(by annihilation) depending on the spin of the
positronium



Figure 5: Ilts production uses the positron from
nuclear proton decay.
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Figure 6: The parapositronium S = 0 decays into
two photons (entangled)
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Figure 7: The orthopositronium S = 1 decays into
three photons (entangled)



(efe™) jpemy—— = M1+ 72+ 73
Vi = V[G(kia >‘)7 kZ]
For circular polarization we have the polarization
vectors

A A
ek, \) = _\ﬁ <cos 0; cos ®; — i\ sin ®;, cos b; sin O,
+ iAcosP;, —sin Hz-) (1)

with A = 4+ and the angles are of

A

k; = (cos ®; sin 6, sin ®; sin 6, cos 6;)
Kinematics: energy-momentum conservation
ki +ky+ks=0

k1+k2+k3:m22m6

The momentum conservation defines a plane in
which the photons move. The plane changes its
orientation from event to event.
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Figure 8: We can choose a = k; and b = ks

The unit vector

k1 X k2
‘kl X k2|

n—

is perpendicular to the plane. Often one chooses



Figure 9: The dynamics of the three photon decay
has been worked some time ago.

Briefly, the matrix element M is
M = —V2V3
for S, =0 and

M =+V; +1V5



for S, = =+. The vector function V is a
lengthy expression. But an important one for the

entanglement. V is given by
V(ki, A ko, Aoj ks, A3) =
(A1 — A2) (A2 + As)e (ki, A1)
+ (2= 23) (s + A€t (ka, M)

+ ()\3 — )\1)()\1 -+ )\2)6*(1;3, )\3)

:E*(f{m A2)) - € (ks, A3))

:6*(123, A3)) - € (ki, A1)

:e*(fﬁ, A1) - € (ka, A2))

This function encodes the whole dynamics including

the entanglement. For instance,

V(k17 :|:7 k27 :|:7 k37 Zl:) =0

On the other hand

V<k17 —1_7 k27 +7 k37 _) — 2€*<1;37 _> (1 - 1/\{1 ’ lA{Q)

V<k17 —1_7 k27 —, k37 —i_) — 2€*<1;27 _> (1 - 1/\{1 ’ 1;3)




etc. This leads directly to the coefficients of the
entanglement.
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S.=0: M= -2V

and

ef(ki, A = +) = —sin,

we obtain the unnormalized three parties entangled
state
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The coefficients come out as

Yo — sin 93 _1 — lA{l . 122
50 — sin (92 1— lA{l . l/\{g
g = sin 01 _1 — 1’\{2 . 1;3

On the other hand with
S, =t . M==xV; +1V;
and
e (ki A = +) +iei(k;, A = ) = ¢'®i(cos6; £ 1)

the entangled state is

U5, =1 Yl ++2) +49 - —+)
+ AU+ -1+ 8% - +-)
+ o] -+ + o)+ —)




with

vg) = T (cosfs — 1) {1 — k- 1%2}
’yf> = TIP3 (—cosf3 — 1) {1 k- 1;2}
(iU = 5% (cosfy — 1) {1 — k- 123}
Bf) = 52 (—cosfhy — 1) {1 — k- 123}

oz$> = T (cosfhy — 1) {1 — ks - 123}
ozg? = 51 (—cosfhy —1) {1 — ks 123}

It is only if we choose a coordinate system such that
n = z the expression becomes simpler. It makes
sense now to introduce you to the paper
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The decay of orthopositronium into three photons produces a physical realization of a pure state with
three-party entanglement. Its quantum correlations are analyzed using recent results on quantum information
theory, looking for the final state that has the maximal amount of Greenberger, Homne, and Zeilmnger like
correlations. This state allows for a statistical dismissal of local realism stronger than the one obtained using

any entangled state of two spin one-half particles.

Figure 10: This is the first (and still one of the
very few) paper on three-photon entanglement from
positronium. We will refer to it as ALP

A

where indeed the authors choose n = z, i.e., 6, =
/2.



[o(ky Ky k3))=(1=ky-Kp)(|++—)+|——+))
+(1—ky-k3)(|+—+)+[-+-)

+(1—kp-k5)(|—++)+|+—-)),
(19)

when the third component of the orthopositronium spin 5,
is equal to zero, and

[y (ky Ky K2))=(1—ky - Ky (| ++ =)= |——+))
H1-kp- B+ —+}-]-+=}

+(1=ky-kg)(| =+ +) =+ ==
(20)

Figure 11: The three-photon entangled state after
putting 6, = 0

In the case of S, = 41 we do not recover the
expression in ALP. We differ by the phases e**®:.
Apart form that we have a different assignation for
S, = 0,£1. This means that our coefficients depend
explicitly on the coordinates (®;) even if we take
97; — 7T/2



How important are the phases? If, in addition
to choosing the z-axis perpendicular to the three
photon plane, we make a rotation of the x-
y coordinates, we can get rid of one phase.
Factorizing a second phase (which becomes global)
we are certainly left with one relative phase. Let
me show you how already in a simpler system
(two particle entanglement) a phase will play a
role in correlation functions which enter the Bell’'s
inequalities. Let me deform a spin- singlet by writing

00)a = —= (I D) = D)

Sl

2
then

2(00](a-SWb - 82)|00), =
1

= [cosacos® 4+ a,b,(1 —cosa) — (a X b), sin af

with the internal variable cos# = a - b and (external)
variable a; and b; (coordinates of the unit vectors).

In correlation functions the phases e™*®: will
certainly play a role.



Incidentally, with linear polarized photons reference
writes a two photon
entanglement as

1 10x
ﬁ[\HHVHe V)| H))
where |[H) = (1,0) and |V) = (0,1) and the
matrices used in correlations are Pauli matrices.

A related question comes then into mind. Shall/can
we choose n = z ? For one single event this
Is certainly possible. If we do this for every
subsequent event we will not be able to classify
the entanglements according to the spin projections
of the positronium S, = 0,+1 since we keep on
changing the quantization axis then. If we group
together, say [V)s,—o with |¥)s ,—o we might be
comparing apples with pears.

Apart from this argument, there is also a loss of
generality. Let us take the case S, = 0. The
condition that the state factorizes (giving rise to two-



particle entanglement) is

=0, v==xa
v=0, 8=z«
a=0, ==+«

For §; = w/2 choosing one of the three cases
above we get a configuration at the edge of the
allowed phase space: two collinear momenta and
with third one anti-parallel, e.g. for v = 0 and
B = « together with the constraint of the energy-
momentum conservation we have

]cA{ylA{Q = COS (912 = —1, IA{Q'IA{g — COS 923 = lA{1°1A{3 = COS (913 =1

Taking now 6, = 0 in general and 6, = A3 = 6 and
013 = 015, 1 = 0 (which corresponds to the case
a = 0,~v = ) we get a different configuration which
factorizes. This factorizing “star” configuration is (i)
not possible if we set all ; = «/2 right from the
beginning and (ii) in accordance with the energy-



momentum conservation if

kl 7k1§%
me—kl 2

ko = ks, |cosf| =

This could mean that the entanglement properties
are different. More specifically, in three-
party entanglement there are two non-biseparable
classes: W-class and GHZ-class (Greenberger-
Horne-Zeilinger) which cannot be transformed into
each other by local operations. Generically, one
writes

IGHZ) = [/000) 4 [111)]

5l

W) = =[|001) + [010) + [100)]

W| #—

If we have a three-party entanglement |¢p) =
Zijk ci;k|tjk) aninvariant measure of the entanglement
is the so-called hyper-determinant

0 < Hdet(cji) = Co00CT11+F - ---Co00C110C001F.. < 1/4



If Hdet = 0 and the state does not factorize then
we have a W-class entanglement. If we choose
n = z the condition Hdet = 0 leads to factorization,
l.e., the configuration of two collinear and one anti-
parallel three momentum which we had before.
Since by our choice of the z-axis we lost some
generality, could it be that we can reach the W-
class in accordance with the energy-momentum
conservation?  The constraint of the energy-
momentum conservation makes the problem more
complex than anticipated. First steps: change of
basis, form circular to linear polarization |+) =
[R/L), |H/V) =[0/1)

)= —=[0) +il)
Then
U)s,.—o = (a0 + Bo—0)|010)
+  (aop — Bo — 70) |100)
-+ ( ag — By + ’Yo) |001>
+ (a0 + Bo + o) [111)



It is easy to calculate the hyperdetereminant in this
basis

Hdet = (—ao+ Bo—0) (a0 — Bo —0)
(a0 = Bo +70) (a0 + Bo + 7o)

If, for instance, a + 5 + v = 0 the entangled state
would look like the W-state even without any change
of basis. However, the main question is whether this
IS possible in accordance with energy-momentum
conservation. This is our future task.

This does not exhaust all possibilities how we can
write the entangled state. Without much ado and
further explanations, but with reference to

we
define first linear parallel (P ) and transversely (T )
polarizations with respect to the three-photon plane
by

€, p=nxKk; €r=n



Then the entangled state can be written as

Ty = klliT;S(ﬁ . )[k1ky + koks + kiks — mZ)|TTT)
8Me

k1koks
M

k1koks

16m,

k1kaks

(fl X 6) :klkl + koko + k3k3]|PPP>

(fl X 6) :k’gkl —+ k1k2]|TTP>

(fl . 8)[—mg —|— mekg —|— k1k2]|PPT>

where ¢ is the polarization vector of the positronium
such that if its spin projection S, with respect to the
quantization axis z is zero € = z etc.
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Figure 12: We can test the three-photon
entanglement by using inequalities which involve
correlations
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Figure 13: or (conditional) probabilities

Let me come first to the correlations.



The Problem

Figure 14: It is not really a problem, but a
suggestion

What do we mean exactly when we write, say
| + +—) ? Obviously, the tensor product

[+ ) =) el

But what exactly is, say |+) or what is its
representation in a finite dimensional Hilbert space?
Consider the following:

1. We have a two-level system given by the two
degrees of freedom of the photon polarization A =
+1.



2. The photons carry momenta and are entangled
In their polarizations, hence

+) = |+)1 = [k, +) = |e(kq, +1))

But the polarization vectors are three dimensional
objects. The mismatch between the number of
qubits & and the dimension of the state vector
comes from the fact that photons, strictly speaking,
do not have spin (defined only in the rest frame).
However, one often sees the the correlations
functions in the form

(Tl -oW)(b-a®)(&- o))

with o, the two dimensional Pauli matrices (this
correlation enters inequalities like the Mermin or
Svetlichny inequality). This implies that the state
vectors are also two dimensional. This goes back to
the so-called Jones formalism where all polarization
states are represented as two dimensional objects.
In general

[4) = (cos Pe'®* sin qbeio‘y)



If the difference between the phases is 7/2 and the
amplitudes equal (cos ¢ = sin ¢) we get the circular
polarization states

1 v 1
VAR,

This is in accordance with the polarization vectors if
¢ = 0 (and not 7/2 ) i.e. we choose k = z. Indeed,
we have then

(17 _i)

N e—Z(I)

ek,+) = 7 (1,4,0)
ek,—) = e (1,—1,0)

which is effectively two dimensional. However, we
cannot choose for all photons k = z especially when
we have chosen once 6; = n/2 like in ALP. For two
photons with k; + ks = 0, say in the decay of para-
positronium with the entanglement

‘\Ij>para — T3 “ + —|_> o ‘ - _>]

S



A

we can do that if we choose k; = 2.
With three photons we will have to choose an
appropriate operator (corresponding to,say circular
polarizations). We can do that by going to the
adjoint representation of SU(2)

(Se)an = —tlEnsn

The eigenvectors to S5 are

1 .
ﬁ(l,iz,())

which are the circular polarizations states in a plane
perpendicular to the z-axis. A third eigenvector
(0,0,1) is possible, but the photon will not have it.
The eigenvectors to S; and S, are

1 , 1 .
ﬁ(o, +i,1), \ﬁ(iz,o, 1)

respectively. The first state describes circular
polarized photons in a plane perpendicular to the



x-axis etc. It makes then sense to consider a- S and
to calculate expectation values of the form

(T|(a-SsW)(b-5P)(e-s)|w)

Figure 15: Maybe it is just a complicated way to
express the “old” correlations.

The Mermin and Svetlichny inequalities, which are
a results of local realistic theories for three particles,
use correlations. It seems it is also possible to
formulate such inequalities using probabilities.
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Hypergraph states form a family of multiparticle g states that g the well-known concept
of Greenberger-Horne-Zeilinger states, cluster states, and more broadly graph states. We study the nonlocal
properties of quantum hypergraph states, We demonstrate that the correlations in hy pergraph states can be
used to derive various types of ity proofs, inchiding Hardy-type and Bell i lities for
genuine multiparticle nonlocality. Moreover, we show that hypergraph states allow for an exponentially
increasing violation of local realism which is robust against loss of particles. Our results suggest that certain

classes of hypergraph states are novel for quanmm logy and based quantum
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“Remark 2.—Putting wgelhu all the null terms derived
from the stabilizer formalism and subtracting the terms
causing a Hardy-type argument, we obtain the Bell inequality

(BY)) = [P(+—=|XZZ) + P(—+ +|XZZ)
+ P(—+—|XZZ) + P(- - +|XZZ) + permutations|
= [P(+==|XXX) + permutations] >0, (10)

where the permutations include all distinct terms that are
obtained by permuting the qubits. The three-uniform hyper-
graph state violates the inequality (11) with the value
of (B") = -3/16.

This Bell inequality follows from the Hardy argument: If
a deterministic local model predicts one of the results with
the minus it also has to predict at least one of the
results corresponding to the terms with a plus sign,
otherwise, it contradicts with the Hardy argument. In
addition, all the terms with a minus sign are exclusive,
50 a deterministic LHV model can predict only one of them.

The Hardy-type argument and the Bell inequality can be
generalized o a higher number of qubits, if we consider
N-qubit hypergraphs with the single hyperedge having a
cardinality N:

This kind of model, even if different bipartitions are
mixed, cannot explain the comrelations of the hypergraph
state, meaning that the hypergraph state is genuine multi-
particle nonlocal. First, one can see by direct inspection that
the stabilizer conditions from Egs. (5) and (6) are not
compatible with the hypergraph correlations P(——
—|XXX)=1/16 and P(— - —|ZZZ) = 1/8. Contrary to
the correlations in Eq. (9) these are symmetric, and allow
the construction of a Bell-Svetlichny inequality [18] valid
for all the different bipartitions.

Observation 4.—Putting all the terms from the hyper-
graph stabilizer formalism and the corelations P{——
—|XXX) and P(-——|ZZZ) together, we obtain the
following Bell-Svetlichny inequality for genuine multi-
particle nonlocality,

(B) = [P(+—=|XZZ) + P(-++|X22)
+ P{=+=|XZZ) + P(= = +|XZZ) + permutations)
+ P(===|XXX)=P(===|ZZZ) 20, (12)
which is violated by the state |H,) with (Bﬁ") ==1\16.

The proof is done by an exhaustive assignments of
nonsignaling and local models.
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Figure 16: The work is still in the process...

1. Our three photon entangled states include some
phases which the seminal paper of Acin, Lattorre
and Pascual do not have.

2. Apart from that we do not put the z-axis
perpendicular to the photon plane. This, as shown,
gives a bigger freedom and we could probe into
the two different classes, W and GHZ class in
accordance with the energy-momentum constraint.

3.(lconoclastic ) For three photons we suggested
a three dimensional correlation formalism since



photons as far as their polarizations are concerned
are two level systems with a three dimensional
formalism.

Figure 17: THANK YOU!



