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• indistinguishability of identical particles
• symmetrization postulate
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are these states entangled?
which is the nature of entanglement in identical particle systems? 
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FIG. 1. The initial state |ψinit⟩AB = |φ⟩|↑⟩A ⊗ |χ⟩|↓⟩B , i.e., the case of separated wells. |φ⟩ and |χ⟩ denote the spatial
part of the wavefunction localized in the left and in the right well, respectively.

We start with a situation where we have one electron in each well. Even if they are prepared
completely independently, their pure quantum state has to be written in terms of Slater determinants
in order to respect the indistinguishability. Operator matrix elements between such single Slater
determinants contain terms due to the antisymmetrization of coordinates (“exchange contributions”
in the language of Hartree–Fock theory). However, if the moduli of ⟨r⃗ |φ⟩, ⟨r⃗ |χ⟩ have only vanishingly
small overlap, these exchange correlations will also tend to zero for any physically meaningful
operator. This situation is generically realized if the supports of the single-particle wavefunctions
are essentially centered around locations being sufficiently apart from each other, or the particles are
separated by a sufficiently large energy barrier. In this case the antisymmetrization has no physical
effect and for all practical purposes it can be neglected.

Such observations clearly justify the treatment of indistinguishable particles separated by macro-
scopic distances as effectively distinguishable objects. So far, research in quantum information theory
has concentrated on this case, where the exchange statistics of particles forming quantum registers
could be neglected, or was not specified at all.

Under these conditions we write an initial state |ψinit⟩AB = |φ⟩|↑⟩A ⊗ |χ⟩|↓⟩B where A (Alice) and
B (Bob) are (physically meaningful) labels for the particle in the left and the right dot, respectively.
The situation is shown in Fig. 1.

Now we want to analyze the situation when the two wells have been moved closer together or the
energy barrier has been lowered. In such a situation the probability of finding, e.g., Alice’s electron in
the right well is non-vanishing. Then the fermionic statistics is clearly essential and the two-electron
wavefunction has to be antisymmetrized and reads |ψ(t1)⟩ = (1/

√
2)[|φ⟩|↑⟩1 ⊗ |χ⟩|↓⟩2 − |χ⟩|↓⟩1 ⊗

|φ⟩|↑⟩2]. The indices A and B are changed to 1 and 2 here to stress that the enumeration of the
particles is completely arbitrary since these labels are not physical: because of the spatial overlap
of the wavefunctions the individual particles labeled 1 or 2 are not accessible independently. The
situation is shown in Fig. 2.

FIG. 2. Illustration of |ψ(t1)⟩, i.e., after lowering the tunnel barrier. The electronic wavefunctions are no longer completely
localized in one of the wells.

|  initiAB = |�i| "iA ⌦ |�i| #iB

[K.Eckert, et al. Annals of Physics 299, 88 (2002) ]
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Note that not only the labeling of the particles but also the notation suggesting a tensor product
structure of the space of states is misleading because the actual state space is just a subspace of the
complete tensor product [41]. As a consequence of this fact the antisymmetrized state |ψ(t1)⟩ formally
resembles an entangled state although it is clear that this entanglement is not accessible, and there-
fore cannot be used as a resource in the sense discussed above for distinguishable particles. To
emphasize this fundamental difference between distinguishable and indistinguishable particles, we
will use the term quantum correlations to characterize useful correlations in systems of indistin-
guishable particles as opposed to correlations arising purely from their statistics (thereby following
[33]).

Quantum correlations in systems of indistinguishable fermions arise if more than one Slater deter-
minant is involved, i.e., if there is no single-particle basis such that a given state of N indistinguish-
able fermions can be represented as an elementary Slater determinant (i.e., a fully antisymmetric
combination of N orthogonal single-particle states). These correlations are the analogue of quan-
tum entanglement in separated systems and are essential for quantum information processing in
non-separated systems.

As an example suppose it is possible to control the coupling J (t) of the electrons such that at
time t2

|ψ(t2)⟩ = 1
2

[|φ⟩|↑⟩1 ⊗ |χ⟩|↓⟩2 − |χ⟩|↓⟩1 ⊗ |φ⟩|↑⟩2 + |φ⟩|↓⟩1 ⊗ |χ⟩|↑⟩2 − |χ⟩|↑⟩1 ⊗ |φ⟩|↓⟩2]

which is illustrated in Fig. 3.
In the given single-particle basis, |ψ(t2)⟩ is written in terms of two elementary Slater determi-

nants (and evidently there is no basis in which it can be written as a single one). This state contains
some useful correlations beyond the required permutation symmetry as can be seen through lo-
calizing the particles again by switching off the interaction, i.e., raising the tunneling barrier or
moving the wells apart (here we neglect the effects of non-adiabaticity, see [33] for a more de-
tailed study of these effects). This corresponds to a partition of the basis between Alice and Bob,
such that Alice’s Hilbert space is formed by {|φ⟩|↑⟩, |φ⟩|↓⟩} and Bob’s by {|χ⟩|↑⟩, |χ⟩|↓⟩}. Then
again the electrons can be viewed as effectively distinguishable, provided that none of the dots

FIG. 3. Illustration of |ψ(t2)⟩.|  (t2)iAB =
1

2
[|�i| "i1 ⌦ |�i| #i2 � |�i| #i1 ⌦ |�i| "i2

+|�i| #i1 ⌦ |�i| "i2 � |�i| "i1 ⌦ |�i| #i2]

lower the barrier

change potential
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Under these conditions we write an initial state |ψinit⟩AB = |φ⟩|↑⟩A ⊗ |χ⟩|↓⟩B where A (Alice) and
B (Bob) are (physically meaningful) labels for the particle in the left and the right dot, respectively.
The situation is shown in Fig. 1.

Now we want to analyze the situation when the two wells have been moved closer together or the
energy barrier has been lowered. In such a situation the probability of finding, e.g., Alice’s electron in
the right well is non-vanishing. Then the fermionic statistics is clearly essential and the two-electron
wavefunction has to be antisymmetrized and reads |ψ(t1)⟩ = (1/

√
2)[|φ⟩|↑⟩1 ⊗ |χ⟩|↓⟩2 − |χ⟩|↓⟩1 ⊗

|φ⟩|↑⟩2]. The indices A and B are changed to 1 and 2 here to stress that the enumeration of the
particles is completely arbitrary since these labels are not physical: because of the spatial overlap
of the wavefunctions the individual particles labeled 1 or 2 are not accessible independently. The
situation is shown in Fig. 2.

FIG. 2. Illustration of |ψ(t1)⟩, i.e., after lowering the tunnel barrier. The electronic wavefunctions are no longer completely
localized in one of the wells.

indistinguishable particles

|  (t1)iAB =
1p
2
[|�i| "i1 ⌦ |�i| #i2 � |�i| #i1 ⌦ |�i| "i2]
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Note that not only the labeling of the particles but also the notation suggesting a tensor product
structure of the space of states is misleading because the actual state space is just a subspace of the
complete tensor product [41]. As a consequence of this fact the antisymmetrized state |ψ(t1)⟩ formally
resembles an entangled state although it is clear that this entanglement is not accessible, and there-
fore cannot be used as a resource in the sense discussed above for distinguishable particles. To
emphasize this fundamental difference between distinguishable and indistinguishable particles, we
will use the term quantum correlations to characterize useful correlations in systems of indistin-
guishable particles as opposed to correlations arising purely from their statistics (thereby following
[33]).

Quantum correlations in systems of indistinguishable fermions arise if more than one Slater deter-
minant is involved, i.e., if there is no single-particle basis such that a given state of N indistinguish-
able fermions can be represented as an elementary Slater determinant (i.e., a fully antisymmetric
combination of N orthogonal single-particle states). These correlations are the analogue of quan-
tum entanglement in separated systems and are essential for quantum information processing in
non-separated systems.

As an example suppose it is possible to control the coupling J (t) of the electrons such that at
time t2

|ψ(t2)⟩ = 1
2

[|φ⟩|↑⟩1 ⊗ |χ⟩|↓⟩2 − |χ⟩|↓⟩1 ⊗ |φ⟩|↑⟩2 + |φ⟩|↓⟩1 ⊗ |χ⟩|↑⟩2 − |χ⟩|↑⟩1 ⊗ |φ⟩|↓⟩2]

which is illustrated in Fig. 3.
In the given single-particle basis, |ψ(t2)⟩ is written in terms of two elementary Slater determi-

nants (and evidently there is no basis in which it can be written as a single one). This state contains
some useful correlations beyond the required permutation symmetry as can be seen through lo-
calizing the particles again by switching off the interaction, i.e., raising the tunneling barrier or
moving the wells apart (here we neglect the effects of non-adiabaticity, see [33] for a more de-
tailed study of these effects). This corresponds to a partition of the basis between Alice and Bob,
such that Alice’s Hilbert space is formed by {|φ⟩|↑⟩, |φ⟩|↓⟩} and Bob’s by {|χ⟩|↑⟩, |χ⟩|↓⟩}. Then
again the electrons can be viewed as effectively distinguishable, provided that none of the dots

FIG. 3. Illustration of |ψ(t2)⟩.|  (t2)iAB =
1

2
[|�i| "i1 ⌦ |�i| #i2 � |�i| #i1 ⌦ |�i| "i2

+|�i| #i1 ⌦ |�i| "i2 � |�i| "i1 ⌦ |�i| #i2]
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FIG. 4. The final state |ψfinal⟩AB . Raising the tunneling barrier localizes the wavefunctions again.

is occupied by two electrons. This does not happen here because the final state is |ψfinal⟩AB =
(1/

√
2)[|φ⟩|↑⟩A ⊗ |χ⟩|↓⟩B + |φ⟩|↓⟩A ⊗ |χ⟩|↑⟩B], where new labels A and B are attributed to the

particles, corresponding to the dot in which they are found after separation; i.e., the electron found
in the left (right) dot is named A(B). |ψfinal⟩AB is shown in Fig. 4.

The final state |ψfinal⟩AB , shown in Fig. 4, is the Bell state |$+⟩, i.e., a maximally entangled two
qubit state (thus the operation performed in this example is the entangling gate

√
SWAP). In this

sense it is reasonable to call |ψ(t2)⟩ a maximally correlated state of two indistinguishable fermions in
a four-dimensional single-particle space and to view it as a resource for the production of entangled
states of distinguishable particles.

Motivated by these considerations in [43] we have developed a classification of states of two
fermions with 2M accessible single-particle states. This question was also addressed very recently
by Li et al. [44] and by Paskauskas and You [45]. In these papers two-boson systems are exam-
ined and analogues to earlier results about two-fermion systems [33, 43] are derived. However,
Refs. [44, 45] differ in detail about which two-boson states should be considered as analogues of
entangled states (in a bipartite system) in a certain limiting case.

Zanardi [41, 42] discusses another approach, ignoring the original tensor product structure through
a partition of the physical space into subsystems. The entangled entities then are no longer par-
ticles but modes. This approach may be seen as complementary to the one followed here. For
completeness we present the corresponding formalism in Appendix A. It is reasonable to con-
sider both kinds of quantum correlations—which one is more useful depends on the particular
situation, for instance on their usefulness for concrete applications, e.g., cryptography or telepor-
tation.

3. ANALOGIES BETWEEN BOSONS, FERMIONS, AND DISTINGUISHABLE
PARTICLES IN LOW-DIMENSIONAL HILBERT SPACES

3.1. Pure States: Schmidt Rank and Slater Rank

3.1.1. Schmidt Rank of Distinguishable Particles

The “classic” examples for quantum entanglement were studied in systems composed of separated
(and therefore distinguishable) subsystems. The most investigated case involves two parties, say
A(lice) and B(ob), having a finite-dimensional Hilbert space HA and HB , respectively. This results
in a total space H=HA ⊗ HB . An important tool for the investigation of such bipartite systems is
the bi-orthogonal Schmidt decomposition [1]. It states that for any state vector |ψ⟩ ∈ H there exist

|  finaliAB =
1p
2
[|�i| "iA ⌦ |�i| #iB

+|�i| #iA ⌦ |�i| "iB ]

lower the barrier

change potential

increase the barrier
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After a desired evolution time in the presence of exchange dynamics, 
the adiabatic passage is applied in reverse, yielding a motional-state 
mapping of the excited-state atom back into the ground state of the left 
well. We can then read out the spin populations to verify the exchange 
oscillations by ejecting atoms in the  | ↑ 〉 state from the optical tweezers, 
and imaging the atom occupancy in each of the two tweezers. With this 
procedure, we can ascertain what the spin and motional degrees of 
freedom of each of the two atoms were when they occupied the same 
optical tweezer.

Exchange oscillations in our experiment are shown in Fig. 2b, and 
show the expected anti-correlated behaviour. To display these data, 
we exclude from our analysis experiments in which imperfections in 
our spin preparation lead to the spins remaining aligned; such events 
yield a static contribution to the signal. We observe undamped oscil-
lations out to times as long as 100 ms, despite the fact that the  
single-particle coherence time between | ↑ 〉 and | ↓ 〉 is less than 1 ms, 
owing to magnetic-field fluctuations. This is an expected feature of 
the entangled states created by the exchange interaction: homogene-
ous magnetic-field fluctuations induce a global phase on the two- 
particle superposition and, as such, leave quantum measurements 
unaffected. Hence, the state occupies a so-called ‘decoherence-free 
subspace’10,29. We can also control the frequency of the spin oscilla-
tions by modifying the depth of the optical tweezer in which the 
exchange occurs, which tunes the two-particle density. To study this 

dependence, we prepare |↑ , ↓ 〉e g R and linearly increase the depth of 
the tweezer in 5 ms, allow evolution of the exchange, and then ramp 
back in reverse and perform the second adiabatic passage. We can 
model the 3D non-separable potential of our optical tweezer trap30, 
and find agreement (Fig. 2c) between the calculated and measured 
spin-exchange frequency Jex/(2π ħ) (see Methods).

The measurements presented thus far have shown correlations in 
single-particle spin states. However, to ensure that future operations 
can retain and propagate quantum information, one must verify that 
the phase coherence within the entangled state is preserved upon 
separating the particles. The entanglement verification protocol  
for separated atoms is summarized in Fig. 3a. For explanatory  
purposes, we first focus on the case when the particles are separated 
after an exchange time of tent =  nπ ħ /2Jex where n is an odd integer.  
The entangled state after the second adiabatic passage is 
| 〉 = (| ↑ 〉 | ↓ 〉 ± | ↓ 〉 | ↑ 〉 ),±  ψ i1

2 L R L R   omitting from now on the ground-
state (g) motional subscripts to simplify notation. The | 〉±ψ  states cor-
respond to the grey and orange Bloch vectors, respectively, in Fig. 3b. 
We then apply a magnetic-field gradient that imposes a difference, 
ħδ , in the | ↑ 〉 ↔ | ↓ 〉 single-atom-transition energy between the left 
and right optical tweezer. By applying the gradient for a time tg, a 
transformation | 〉 → (| ↑ 〉 | ↓ 〉 ± | ↓ 〉 | ↑ 〉 )±ψ ieiδt1

2 L R L R
g  is achieved. 

As a function of tg, the state rotates between the singlet (pink in  
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Figure 1 | Experimental overview. a, Left, two particles (green spheres), 
trapped in separate optical tweezers (red), are initiated in their motional 
ground state and in opposing spin states (black arrows). Dynamical 
reconfiguration of optical tweezer traps merges the particles into the  
same optical tweezer in specific motional states (centre), and spin 
exchange entangles the particles. The atoms are separated into different 
optical tweezers, and the entanglement between the particles is 
experimentally detected (right). b, Exchange interaction. Left, two atoms 
of opposite spin are prepared in the ground (g) and excited (e) motional 
states of the x direction. For bosonic atoms the singlet channel  
anti-symmetrizes in the motional degree of freedom, yielding 

ψ ψ ψ ψ ψ( , ) = ( ( ) ( ) − ( ) ( ))/r r r r r r 2S g e e g1 2 1 2 1 2 . Right, from one-dimensional 
spatial wavefunctions we see that the anti-symmetrization prevents the 
two particles at positions x1 and x2 (in units of the oscillator length r0) 
from occupying the same position (dashed white line), which is true  
for all choices of y, z. This leads to zero interaction energy for the singlet 
channel and Jex for the triplet channel with associated wavefunction 
ψ ψ ψ ψ ψ( , ) = ( ( ) ( ) + ( ) ( ))/r r r r r r 2T g e e g1 2 1 2 1 2 . c, Studying entanglement  
of the separated particles. On the Bloch sphere (grey), the exchange 
interactions ideally result in a state pointing along the ± y axis, but, in 
general, the state with associated Bloch vector (red arrow) can point in any 
direction in the equatorial plane with associated coherence angle ϕ.

[A.M. Kaufman et al, Nature 527, 208–211 (2015)]
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Fig. 3b) and triplet (blue) with angular frequency δ . We then apply a 
global π /2 pulse in the | ↑ 〉, | ↓ 〉{ } subspace. This pulse maps the sin-
glet back to itself, while it maps the triplet to a Bell state 

(| ↑ 〉 | ↑ 〉 + | ↓ 〉 | ↓ 〉 )i
2 L R L R . Therefore, by measuring the probability 

that the spins are aligned or anti-aligned as a function of tg, we can 
observe singlet–triplet oscillations whose amplitude characterizes the 

two-particle coherence. We quantify this probability with the parity 
( ) = ∑ (− )Π t P 1j j

j
g , where Pj is the likelihood to measure j atoms in 

the spin-down state1–4. The parity is equivalently the projection of 
the Bloch vector in Fig. 3b onto the x axis before the π /2 pulse, and 
hence the gradient is essential because, although entangled, the states 
| 〉±ψ  (grey, orange) exhibit zero parity after application of a π /2 pulse.
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Figure 2 | Direct observation of spin-exchange 
dynamics between two atoms. a, Preparation of 
motional-state configuration and detection in the 
double-well potential (see key for properties of 
the atoms). Initially, an atom is prepared in the 
ground state of each of two spatially separated 
optical tweezers (left panel). The atoms are 
combined in one of the optical tweezers via 
tunnelling (green arrows), allowed to interact 
for a controlled amount of time during which 
spin exchange occurs, and then separated into 
two optical tweezers for detection (right panel). 
Green and purple backgrounds show the colour 
coding for states shown in b. b, Using post-
selection on our spin preparation, we plot the 
likelihood to measure the state |  ↑g  〉L  |  ↓  g  〉R (green) 
and |  ↓g  〉L  |  ↑g  〉R (purple) as a function of time 
between the end of the first adiabatic passage and 
the beginning of the second. c, Measured spin-
exchange oscillation frequency as a function of 
optical tweezer depth. The dashed black line is the 
predicted exchange frequency from a parameter-
free model of the potential (see Methods); the 
shaded region indicates the effect of systematic 
uncertainties on this prediction. All error bars are 
the standard error in the measurement.
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Figure 3 | Detection of non-local entanglement. 
a, Procedure for creating and detecting 
entanglement. The spin-exchange procedure of 
Fig. 2a is applied to entangle the atoms (left 
panel), and then, upon separating them, a 
magnetic-field gradient and microwaves are 
introduced (middle panel). The underlying 
entanglement is revealed by the parity of the final 
spin configurations of the particles (right panel). 
See Methods for details. b, Four different Bloch 
vector orientations in the experiment. Right, the 
grey and orange orientations correspond to the 
outcome of the spin-exchange dynamics (after the 
second adiabatic passage), which yield rotations 
in the y–z plane of the Bloch sphere (left). The 
pink and blue orientations correspond to the 
points of peak parity, and are accessed by 
applying a magnetic-field gradient that rotates the 
states about the z axis. c, After creating | 〉+ψ , we 
plot the measured parity Π as a function of 
gradient time tg. The grey bar is the bound on 
parity oscillation contrast delineating separable 
and entangled states, which accounts for 
imperfect spin preparation. The coloured dashed 
lines are at times when the associated states 
indicated in b are created. d, Measured parity as 
the exchange time is varied and correspondingly 
the atoms are entangled and unentangled. In the 
lower plot, we set tg such that it rotates | 〉+ψ  to | 〉T  
and then measure the parity. The upper plot is the 
same experiment without the parity detection, 
that is, the protocol of Fig. 2. The dashed lines 
indicate times when the corresponding states 
indicated in b are produced. In c and d, the error 
bars in the data plots are the standard error, and 
the pink swaths show the 95% confidence bands.
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After a desired evolution time in the presence of exchange dynamics, 
the adiabatic passage is applied in reverse, yielding a motional-state 
mapping of the excited-state atom back into the ground state of the left 
well. We can then read out the spin populations to verify the exchange 
oscillations by ejecting atoms in the  | ↑ 〉 state from the optical tweezers, 
and imaging the atom occupancy in each of the two tweezers. With this 
procedure, we can ascertain what the spin and motional degrees of 
freedom of each of the two atoms were when they occupied the same 
optical tweezer.

Exchange oscillations in our experiment are shown in Fig. 2b, and 
show the expected anti-correlated behaviour. To display these data, 
we exclude from our analysis experiments in which imperfections in 
our spin preparation lead to the spins remaining aligned; such events 
yield a static contribution to the signal. We observe undamped oscil-
lations out to times as long as 100 ms, despite the fact that the  
single-particle coherence time between | ↑ 〉 and | ↓ 〉 is less than 1 ms, 
owing to magnetic-field fluctuations. This is an expected feature of 
the entangled states created by the exchange interaction: homogene-
ous magnetic-field fluctuations induce a global phase on the two- 
particle superposition and, as such, leave quantum measurements 
unaffected. Hence, the state occupies a so-called ‘decoherence-free 
subspace’10,29. We can also control the frequency of the spin oscilla-
tions by modifying the depth of the optical tweezer in which the 
exchange occurs, which tunes the two-particle density. To study this 

dependence, we prepare |↑ , ↓ 〉e g R and linearly increase the depth of 
the tweezer in 5 ms, allow evolution of the exchange, and then ramp 
back in reverse and perform the second adiabatic passage. We can 
model the 3D non-separable potential of our optical tweezer trap30, 
and find agreement (Fig. 2c) between the calculated and measured 
spin-exchange frequency Jex/(2π ħ) (see Methods).

The measurements presented thus far have shown correlations in 
single-particle spin states. However, to ensure that future operations 
can retain and propagate quantum information, one must verify that 
the phase coherence within the entangled state is preserved upon 
separating the particles. The entanglement verification protocol  
for separated atoms is summarized in Fig. 3a. For explanatory  
purposes, we first focus on the case when the particles are separated 
after an exchange time of tent =  nπ ħ /2Jex where n is an odd integer.  
The entangled state after the second adiabatic passage is 
| 〉 = (| ↑ 〉 | ↓ 〉 ± | ↓ 〉 | ↑ 〉 ),±  ψ i1

2 L R L R   omitting from now on the ground-
state (g) motional subscripts to simplify notation. The | 〉±ψ  states cor-
respond to the grey and orange Bloch vectors, respectively, in Fig. 3b. 
We then apply a magnetic-field gradient that imposes a difference, 
ħδ , in the | ↑ 〉 ↔ | ↓ 〉 single-atom-transition energy between the left 
and right optical tweezer. By applying the gradient for a time tg, a 
transformation | 〉 → (| ↑ 〉 | ↓ 〉 ± | ↓ 〉 | ↑ 〉 )±ψ ieiδt1

2 L R L R
g  is achieved. 

As a function of tg, the state rotates between the singlet (pink in  
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Figure 1 | Experimental overview. a, Left, two particles (green spheres), 
trapped in separate optical tweezers (red), are initiated in their motional 
ground state and in opposing spin states (black arrows). Dynamical 
reconfiguration of optical tweezer traps merges the particles into the  
same optical tweezer in specific motional states (centre), and spin 
exchange entangles the particles. The atoms are separated into different 
optical tweezers, and the entanglement between the particles is 
experimentally detected (right). b, Exchange interaction. Left, two atoms 
of opposite spin are prepared in the ground (g) and excited (e) motional 
states of the x direction. For bosonic atoms the singlet channel  
anti-symmetrizes in the motional degree of freedom, yielding 

ψ ψ ψ ψ ψ( , ) = ( ( ) ( ) − ( ) ( ))/r r r r r r 2S g e e g1 2 1 2 1 2 . Right, from one-dimensional 
spatial wavefunctions we see that the anti-symmetrization prevents the 
two particles at positions x1 and x2 (in units of the oscillator length r0) 
from occupying the same position (dashed white line), which is true  
for all choices of y, z. This leads to zero interaction energy for the singlet 
channel and Jex for the triplet channel with associated wavefunction 
ψ ψ ψ ψ ψ( , ) = ( ( ) ( ) + ( ) ( ))/r r r r r r 2T g e e g1 2 1 2 1 2 . c, Studying entanglement  
of the separated particles. On the Bloch sphere (grey), the exchange 
interactions ideally result in a state pointing along the ± y axis, but, in 
general, the state with associated Bloch vector (red arrow) can point in any 
direction in the equatorial plane with associated coherence angle ϕ.
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[John Schliemann, et al. PRA 64, 022303 (2001)]
[R.Paskauskas, L.You. PRA 64, 042310 (2001)]

product states

Is this formal analogy enough?

Schmidt-Slater
coefficients

| i =
2KX

i,j

wi,jf
†
i f

†
j |0i | i =

KX

i=1

Fi+1f̃
†
2(i+1)f̃

†
2(i+1)|0i

| i =
KX

i,j

zi,jb
†
i b

†
j |0i | i =

KX

i=1

Bi b̃
†
i b̃

†
i |0i



indistinguishable particles: entanglement
Fermions

Bosons

F = uwuT

B = uzuT

change of basis

change of basis

block diagonal

diagonal

[N. Killoran, et al. PRL 112, 150501 (2014) ]
[J. Schliemann, et al. PRA 64, 022303 (2001)]

[R.Paskauskas, L.You. PRA 64, 042310 (2001)]

product states

Is this formal analogy enough? YES!

Schmidt-Slater
coefficients

| i =
2KX

i,j

wi,jf
†
i f

†
j |0i | i =

KX

i=1

Fi+1f̃
†
2(i+1)f̃

†
2(i+1)|0i

| i =
KX

i,j

zi,jb
†
i b

†
j |0i | i =

KX

i=1

Bi b̃
†
i b̃

†
i |0i



entanglement quantification
concurrence
(lowest dimensional systems)

§ distinguishable particles
two-level

§ fermions
four-level 

§ bosons
two-level

[K.Eckert, et al. Annals of Physics 299, 88 (2002) ]

HS = C2

HS = C4

HS = C2

H = HS ⌦HS

H = A(HS ⌦HS)

H = S(HS ⌦HS)

Dim(H) = 4

Dim(H) = 6

Dim(H) = 3

C(| i) = 2| 12 21 �  22 11|

C(|wi) = 8|w12w34 + w13w24 + w14w23|

C(| i) = 4|v11v22 � v212|



entanglement quantification
concurrence
(lowest dimensional systems)

§ distinguishable particles
two-level

§ fermions
four-level 

§ bosons
two-level

[K.Eckert, et al. Annals of Physics 299, 88 (2002) ]

HS = C2

HS = C4

HS = C2

H = HS ⌦HS

H = A(HS ⌦HS)

H = S(HS ⌦HS)

Dim(H) = 4

Dim(H) = 6

Dim(H) = 3

C(| i) = 4|v11v22 � v212|
= 4| det(v)|

C(|wi) = 8|w12w34 + w13w24 + w14w23|
= 8| det(w)|1/2

C(| i) = 2| 12 21 �  22 11|
= 2| det( )|



entanglement quantification
distinguishable particles

SL-invariant measure
special linear group
the group of matrices with determinant one.

• invariance for 
• homogeneity for 
• mixed states

examples
• concurrence
• three tangle (three-qubit)
• G-Concurrence (bipartite systems)

[G. Gour, PRA 71, 012318 (2005) ]

G ⌘ SL(d1,C)⌦ SL(d2,C)⌦ · · ·⌦ SL(dN ,C)

SL(d,C) d⇥ d

Einv(ĝ⇢ĝ†) = Einv(⇢) g 2 G

Einv(r⇢) = rEinv(⇢) r > 0

Einv(⇢) = min
X

i

piEinv( i)



entanglement quantification
distinguishable particles

SL-invariant measure
special linear group
the group of matrices with determinant one.

• invariance for 
• homogeneity for 
• mixed states

examples
• concurrence
• three tangle (three-qubit)
• G-Concurrence (bipartite systems)

[G. Gour, PRA 71, 012318 (2005) ]

G ⌘ SL(d1,C)⌦ SL(d2,C)⌦ · · ·⌦ SL(dN ,C)

SL(d,C) d⇥ d

Einv(ĝ⇢ĝ†) = Einv(⇢) g 2 G

Einv(r⇢) = rEinv(⇢) r > 0

Einv(⇢) = min
X

i

piEinv( i)

Gd(| i) = d| det( † )|1/d

| i =
X

ij

 ij |�ii|'ji



entanglement quantification
identical particles

SL-invariant measure
special linear group: single particle space
the group of matrices with determinant one.

• invariance for 
• homogeneity for 
• mixed states

examples
• G-Concurrence (bipartite systems)

SL(d,C) d⇥ d

Einv(ĝ⇢ĝ†) = Einv(⇢) g 2 G

Einv(r⇢) = rEinv(⇢) r > 0

Einv(⇢) = min
X

i

piEinv( i)

G ⌘ SL(d1,C)



entanglement quantification
G-Concurrence 
(higher dimensional systems)

fermions

bosons

|wi =
2KX

i,j

wi,jf
†
i f

†
j |0i | Ai =

2KX

i,j

 ij |iji

|vi =
KX

i,j

vi,jb
†
i b

†
j |0i | si =

KX

i,j

 ij |iji

 ij = � ji =
p
2wij

 ij =  ji =
p
2vij

Gd=2K(| Ai) = d| det( A)|2/d = 2d| det(w)|2/d

Gd=K(| Si) = d| det( S)|2/d = 2d| det(v)|2/d



bipartite random states 



random states of fermionic and bosonic systems
why random states?

• entanglement is an useful resource for quantum computation and randomness is a way to 
create it. 

• useful in super dense coding, remote state preparation, data hiding protocols. 
• they provide a natural benchmarks. 
• random states allow to asset general behaviors with minimal prior information. 



states distribution: uniform
normalized pure states uniformly distributed on the Hilbert space
(Haar measure)

P ( ) = P ( 1, . . . , 2) = Nd �(1� | |2)

G-concurrence distribution P (Gd) =

Z
[d ]�

⇣
Gd � d| det(  †)|1/d

⌘
P ( )



G-concurrence distribution: simplest case
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P (C) = 3C(1� C2)1/2

distinguishable particles



G-concurrence distribution: simplest case

P (C) = 3C(1� C2)1/2

distinguishable particles fermions

Pf (C) = 5C(1� C2)3/2
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G-concurrence distribution: simplest case

P (C) = 3C(1� C2)1/2

distinguishable particles fermions
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b

Pf (C) = 5C(1� C2)3/2 Pb(C) = 2C

bosons



G-concurrence distribution

P (Gd) =

Z
[d ]�

⇣
Gd � d| det(  †)|1/d

⌘
P ( )Gd(| i) = d| det( † )|1/d = d|

Y

i

�i|2/d



G-concurrence distribution

𝛾 𝑐 = 2% and 𝑐 = 0 distinguishable, 𝑐 = −1 bosons, and 𝑐 = +1 fermions. 

Join probability density of Slater-Schmidt coefficients

P (c)
N (�1, . . . ,�N ) := C(c)

N �

 
1�

X

i

�i

!
NY

i=1

✓(�i)
Y

i<j

|�i � �j |2�

P (Gd) =

Z
[d ]�

⇣
Gd � d| det(  †)|1/d

⌘
P ( )Gd(| i) = d| det( † )|1/d = d|

Y

i

�i|2/d

[V. Cappellini et al, PRA 74(6), 062322 (2006)]

[K. Zyczkowski and H.-J. Sommers, J. Phys. a: Math. Gen. 34, 7111 (2001)]



G-concurrence distribution

𝛾 𝑐 = 2% and 𝑐 = 0 distinguishable, 𝑐 = −1 bosons, and 𝑐 = +1 fermions. 

Join probability density of Slater-Schmidt coefficients

P (c)
N (�1, . . . ,�N ) := C(c)

N �

 
1�

X

i

�i

!
NY

i=1

✓(�i)
Y

i<j

|�i � �j |2�

P (Gd) =

Z
[d ]�

⇣
Gd � d| det(  †)|1/d

⌘
P ( )

Moments of G(c)N

hGM
(c)iN = NM hDM/N

(c) iN = NM � (N + �N(N � 1)))

� (N +M + �N(N � 1)))

N�1Y

j=0

�(1 +M/N + �j)

�(1 + �j)

Gd(| i) = d| det( † )|1/d = d|
Y

i

�i|2/d

[V. Cappellini et al, PRA 74(6), 062322 (2006)]

[K. Zyczkowski and H.-J. Sommers, J. Phys. a: Math. Gen. 34, 7111 (2001)]



G-concurrence distribution
distinguishable particles

[V. Cappellini et al, PRA 74(6), 062322 (2006)]

Quantum entanglement in random bipartite
states of identical particles
Natalia Herrera Valencia
Departamento de Fı́sica, Universidad Nacional de Colombia, Bogota D.C., Colombia

Abstract
In the last years, entanglement in identical particles (IP) has become crucial
for understanding and exploiting quantum phenomena involving highly corre-
lated indistinguishable systems such as ultra-cold gases in optical lattices [1],
photons in non-linear waveguides [2] and fermions in quantum dots [3]. Howe-
ver, in contrast to the well developed and stablished theory of entanglement
for distinguishable particles, and despite the significant effort invested in it, an
entanglement theory for states of IP still remains in a precarious state. In an
attempt to provide a description of the nature of entanglement in systems of
IP, we propose a measure for the entanglement of bipartite indistinguishable
systems which emerges as a natural restriction of the SL-invariant monotone
for NxN systems of distinguishable particles to the symmetric and antisymme-
tric subspaces. This measure allows the characterization of the entanglement
distribution on particular ensembles of random states of high-dimensional bi-
partite systems of bosons and fermions, which becomes relevant because of
their ability to assess general behaviors with minimal initial information.

ENTANGLEMENT CREATION WITH
IDENTICAL PARTICLES

Entangling two transportable neutral atoms via local spin exchange [1]

Using a mobile optical tweezer, it is possible to prepare and
locally entangle two ultracold neutral atoms, and then separate
them while preserving their entanglement.

ENTANGLEMENT: DISTINGUISHABLE

Bipartite Systems
H1 = H2 = Cn

Entanglement for pure
states

• Product State: ⇢ = ⇢1 ⌦ ⇢2

• Entangled State: ⇢ 6= ⇢1 ⌦ ⇢2

Entanglement depends on the
tensor product structure of the
system.

Separability Criteria
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Schimidt Decomposition

The state is entangled if and only if r > 1.

ENTANGLEMENT: IDENTICAL

Consequences of Indistinguishability
Simmetrization Postulate �!No (obvious) tensor product structu-

re for the composite system

Distinguishable Fermions Bosons

H = Cn ⌦ Cn H = A[Cn ⌦ Cn] H = S [Cn ⌦ Cn]
dim[H] = n2 dim[H] = n(n�1)

2 dim[H] = n(n+1)
2

Schimidt-Slater Decomposition [4,5]

• Fermions

|wi =
2KX

i,j=1

wijf
†
i f

†
j |0i �! |wi =

rX

i=1

Fi

Product Statesz }| {
f̃†2i�1f̃

†
2i|0i

where W = {wij} and wij = �wji. The Schmidt-Slater coeffi-
cients matrix F = [UWUT ] is Block-Diagonal.

• Bosons

|vi =
KX

i,j=1

vijb
†
i b
†
j|0i �! |vi =

rX

i

Bi

Product Statesz }| {
b̃†i b̃

†
i |0i

where V = {vij} and vij = vji. The Schmidt-Slater coefficients
matrix B = [UV UT ] is Diagonal.

Slater rank r: number of Schmidt-Slater coefficients different
from zero
Entanglement: A state is entangled if its Slater rank is larger
than one.

ENTANGLEMENT MONOTONES

Distinguishable Case
Consider a pure (d⇥ d)-dimensional state with |iiA, |jiB bases in
each system.

| i =
X

ij

aij|iiA|jiB with A = {aij} the coefficient Matrix

G-Concurrence [6]:

Gd (| i) = d
h
det(A†A)

i1/d
= d

������

dY

i

�i

������

2/d

, �i : Schmidt Coefficients

•Gd (| i) = 0 : The bipartite entanglement does not involve all
the d levels related to each particle.

Indistinguishable Case
For the low-dimensional cases [4,5]:
Fermions: 4x4 system

W =

0

BB@

0 w12 w13 w14
�w12 0 w23 w24
�w13 �w23 0 w34
�w14 �w24 �w34 0

1

CCA

dimH = 6
C(|wi) = 8| det(W )|1/2

Bosons: 2x2 system

V =

✓
v11 v12
v12 v22

◆

dimH = 3
C(|vi) = |4 det(V )|

For fermonic and bosonic states of higher dimensions the distin-
ction between maximal and non-maximal Slater rank is provided
by the vanishing of the coefficient matrix determinant.

G-CONCURRENCE GENERALIZATION

We extend the G-Concurrence by projecting the measure on the
symmetric and antisymmetric subspaces containing the states of
fermions and bosons.

G-Concurrence for identical particles

Taking into account the normalization conditions on the represen-
tation coefficients, we define the G-Concurrence for a pair of bo-
sons and fermions:

Fermions: GF
2N (|wi) = 4N | det(W )|1/N

Bosons: GB
N (|vi) = 2N | det(V )|2/N

Hence, one can write the G-Concurrence in terms of the Schmidt-
Slater coefficients of the matrices W and V as:

Fermions: GF
2N = 4N |QN

i=1Fi|1/2N

Bosons: GB
N = 2N |QN

i=1Bi|1/N

These expressions consist on a projection of the only SL-invariant
measure for d ⇥ d systems of distinguishable particles and we
think of them as a proper measure for quantifying the entan-
glement capacity of bipartite systems of identical particles. The
restriction made on the symmetric and antisymmetric spaces
allows the monotone to take into account the physical properties
and consequences of indistinguishability in these systems and
give an idea, as the G-Concurrence does for distinguishable
particles, of the amount of entanglement available for using in
information tasks.

RANDOM STATES
Random States allow to assess general behaviors with minimal
prior information.

Uniform Distribution:
• Each state belongs to the subs-

pace with the appropriate sym-
metry.

• Minimum prior knowledge of the
quantum state.

• Normalized states are points on
the surface of a sphere: Every
point has the same probability.

• Measure induced by the Haar
measure.

| i = U | 0i
P (| i) = P (U | 0i)| {z }

Haar’s Invariant Measure

ENTANGLEMENT DISTRIBUTION IN N ⇥N
SYSTEMS OF IDENTICAL PARTICLES

Our starting point is the probability distribution of the Schmidt-
Slater coefficients:

P
(c)
N (�1, . . . ,�N ) = C

(c)
N �

0

@1�
NX

i=1

�i

1

A
NY

i=1

⇥(�i)
Y

i<j

|�i��j|2�, (1)

with

C
(c)
N =

(�(1 + �))N � (N + �N(N � 1)))
N�1Q
j=0

�(1 + �(1 + j))�(1 + �j)

. (2)

where �(c) = 2c with c = �1 for bosons, c = +1 for fermions and
c = 0 for distinguishable particles. The latter case, was already
consider in [7].
The moments of the determinants distribution are:

hDM
(c)iN =

Z 1

0
d�1 . . . d�N DM (�1, · · · ,�N )P

(c)
N (�1, . . . , lN ). (3)

From which we can obtain Pc
N (D) by inverse Laplace transform.

From the relation between the determinants and the G-
Concurrence, we determine the probability distribution of the en-
tanglement in higher dimensional bipartite systems of identical
particles as:

Pc
N (G) =

ND

G
Pc
N (D). (4)

We solve the integral in Eq. (3) numerically for the dimensions
N = 2, 3, 4, 5, 6, where one must take into account in the fermionic
case, the single particles dimension is given by 2N . The expres-
sions were tested by performing numerical simulations. The plots
show an excellent agreement between the results of the distribu-
tions obtained from the moments and the histograms.

Analytical (plotted in solid lines) and numerical results (histograms) for the PDF
of distinguishable and identical particles systems G-Concurrence with dimension
N=2,3,4,5.The dotted lines are the asymptotic distributions for the left limit (G !
0)

Analytical expressions for the asymptotic behavior were determi-
ned for the tails of the distribution: G ! 0, show in the plot above,
and G ! 1, illustrated in the plot bellow.

Asymptotic behavior of the determinants PDF of (left) N = 2 and (right)
N = 3 dimensions for the limit G ! 1

The behavior of the PDF of
entanglement changes with
the system size N , becoming
narrower for increasing value
of N for both the identical
and distinguishable particles
cases. In the limit of large N
we showed the distribution
tends to a delta distribution
concentrated around the
value G = e�1.

PDF for distinguishable (top), fer-
mionic (medium) and bosonic (bot-
tom) systems with single particle di-
mension N=2,3,4,5,6. In the limit of
large system size (N ! 1) the
distributions concentrate around the
mean value 1/e (dotted line).
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Summary & Outlook
Summary
• We identified the restriction of the SL - invariant monotones to the

symmetric and antisymmetric subspaces as possible measures
for entanglement in systems of identical particles.

• We used G-Concurrence to study the distribution of entanglement
in high-dimensional bipartite systems of bosons and fermions.

Outlook
• Characterization of entanglement in multipartite systems of iden-

tical particles.
• Generalization of the monotone for mixed states of identical par-

ticles



G-concurrence distribution
distinguishable particles

bosons fermions

Quantum entanglement in random bipartite
states of identical particles
Natalia Herrera Valencia
Departamento de Fı́sica, Universidad Nacional de Colombia, Bogota D.C., Colombia

Abstract
In the last years, entanglement in identical particles (IP) has become crucial
for understanding and exploiting quantum phenomena involving highly corre-
lated indistinguishable systems such as ultra-cold gases in optical lattices [1],
photons in non-linear waveguides [2] and fermions in quantum dots [3]. Howe-
ver, in contrast to the well developed and stablished theory of entanglement
for distinguishable particles, and despite the significant effort invested in it, an
entanglement theory for states of IP still remains in a precarious state. In an
attempt to provide a description of the nature of entanglement in systems of
IP, we propose a measure for the entanglement of bipartite indistinguishable
systems which emerges as a natural restriction of the SL-invariant monotone
for NxN systems of distinguishable particles to the symmetric and antisymme-
tric subspaces. This measure allows the characterization of the entanglement
distribution on particular ensembles of random states of high-dimensional bi-
partite systems of bosons and fermions, which becomes relevant because of
their ability to assess general behaviors with minimal initial information.

ENTANGLEMENT CREATION WITH
IDENTICAL PARTICLES

Entangling two transportable neutral atoms via local spin exchange [1]

Using a mobile optical tweezer, it is possible to prepare and
locally entangle two ultracold neutral atoms, and then separate
them while preserving their entanglement.

ENTANGLEMENT: DISTINGUISHABLE

Bipartite Systems
H1 = H2 = Cn

Entanglement for pure
states

• Product State: ⇢ = ⇢1 ⌦ ⇢2

• Entangled State: ⇢ 6= ⇢1 ⌦ ⇢2

Entanglement depends on the
tensor product structure of the
system.

Separability Criteria
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The state is entangled if and only if r > 1.

ENTANGLEMENT: IDENTICAL

Consequences of Indistinguishability
Simmetrization Postulate �!No (obvious) tensor product structu-

re for the composite system

Distinguishable Fermions Bosons

H = Cn ⌦ Cn H = A[Cn ⌦ Cn] H = S [Cn ⌦ Cn]
dim[H] = n2 dim[H] = n(n�1)

2 dim[H] = n(n+1)
2

Schimidt-Slater Decomposition [4,5]

• Fermions

|wi =
2KX

i,j=1

wijf
†
i f

†
j |0i �! |wi =

rX

i=1

Fi

Product Statesz }| {
f̃†2i�1f̃
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2i|0i

where W = {wij} and wij = �wji. The Schmidt-Slater coeffi-
cients matrix F = [UWUT ] is Block-Diagonal.

• Bosons

|vi =
KX

i,j=1

vijb
†
i b
†
j|0i �! |vi =

rX

i

Bi

Product Statesz }| {
b̃†i b̃

†
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where V = {vij} and vij = vji. The Schmidt-Slater coefficients
matrix B = [UV UT ] is Diagonal.

Slater rank r: number of Schmidt-Slater coefficients different
from zero
Entanglement: A state is entangled if its Slater rank is larger
than one.

ENTANGLEMENT MONOTONES

Distinguishable Case
Consider a pure (d⇥ d)-dimensional state with |iiA, |jiB bases in
each system.

| i =
X

ij

aij|iiA|jiB with A = {aij} the coefficient Matrix

G-Concurrence [6]:

Gd (| i) = d
h
det(A†A)

i1/d
= d
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, �i : Schmidt Coefficients

•Gd (| i) = 0 : The bipartite entanglement does not involve all
the d levels related to each particle.

Indistinguishable Case
For the low-dimensional cases [4,5]:
Fermions: 4x4 system

W =

0
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�w12 0 w23 w24
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dimH = 6
C(|wi) = 8| det(W )|1/2

Bosons: 2x2 system

V =

✓
v11 v12
v12 v22

◆

dimH = 3
C(|vi) = |4 det(V )|

For fermonic and bosonic states of higher dimensions the distin-
ction between maximal and non-maximal Slater rank is provided
by the vanishing of the coefficient matrix determinant.

G-CONCURRENCE GENERALIZATION

We extend the G-Concurrence by projecting the measure on the
symmetric and antisymmetric subspaces containing the states of
fermions and bosons.

G-Concurrence for identical particles

Taking into account the normalization conditions on the represen-
tation coefficients, we define the G-Concurrence for a pair of bo-
sons and fermions:

Fermions: GF
2N (|wi) = 4N | det(W )|1/N

Bosons: GB
N (|vi) = 2N | det(V )|2/N

Hence, one can write the G-Concurrence in terms of the Schmidt-
Slater coefficients of the matrices W and V as:

Fermions: GF
2N = 4N |QN

i=1Fi|1/2N

Bosons: GB
N = 2N |QN

i=1Bi|1/N

These expressions consist on a projection of the only SL-invariant
measure for d ⇥ d systems of distinguishable particles and we
think of them as a proper measure for quantifying the entan-
glement capacity of bipartite systems of identical particles. The
restriction made on the symmetric and antisymmetric spaces
allows the monotone to take into account the physical properties
and consequences of indistinguishability in these systems and
give an idea, as the G-Concurrence does for distinguishable
particles, of the amount of entanglement available for using in
information tasks.

RANDOM STATES
Random States allow to assess general behaviors with minimal
prior information.

Uniform Distribution:
• Each state belongs to the subs-

pace with the appropriate sym-
metry.

• Minimum prior knowledge of the
quantum state.

• Normalized states are points on
the surface of a sphere: Every
point has the same probability.

• Measure induced by the Haar
measure.

| i = U | 0i
P (| i) = P (U | 0i)| {z }

Haar’s Invariant Measure

ENTANGLEMENT DISTRIBUTION IN N ⇥N
SYSTEMS OF IDENTICAL PARTICLES

Our starting point is the probability distribution of the Schmidt-
Slater coefficients:
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where �(c) = 2c with c = �1 for bosons, c = +1 for fermions and
c = 0 for distinguishable particles. The latter case, was already
consider in [7].
The moments of the determinants distribution are:
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From which we can obtain Pc
N (D) by inverse Laplace transform.

From the relation between the determinants and the G-
Concurrence, we determine the probability distribution of the en-
tanglement in higher dimensional bipartite systems of identical
particles as:

Pc
N (G) =

ND

G
Pc
N (D). (4)

We solve the integral in Eq. (3) numerically for the dimensions
N = 2, 3, 4, 5, 6, where one must take into account in the fermionic
case, the single particles dimension is given by 2N . The expres-
sions were tested by performing numerical simulations. The plots
show an excellent agreement between the results of the distribu-
tions obtained from the moments and the histograms.

Analytical (plotted in solid lines) and numerical results (histograms) for the PDF
of distinguishable and identical particles systems G-Concurrence with dimension
N=2,3,4,5.The dotted lines are the asymptotic distributions for the left limit (G !
0)

Analytical expressions for the asymptotic behavior were determi-
ned for the tails of the distribution: G ! 0, show in the plot above,
and G ! 1, illustrated in the plot bellow.

Asymptotic behavior of the determinants PDF of (left) N = 2 and (right)
N = 3 dimensions for the limit G ! 1

The behavior of the PDF of
entanglement changes with
the system size N , becoming
narrower for increasing value
of N for both the identical
and distinguishable particles
cases. In the limit of large N
we showed the distribution
tends to a delta distribution
concentrated around the
value G = e�1.

PDF for distinguishable (top), fer-
mionic (medium) and bosonic (bot-
tom) systems with single particle di-
mension N=2,3,4,5,6. In the limit of
large system size (N ! 1) the
distributions concentrate around the
mean value 1/e (dotted line).

References
[1] A. M. Kaufman, et al. Nature 527, 208–211 (2015).
[2] A. Peruzzo, et al. Science 329, 1500 (2010).
[3] Z. B. Tan, et al.Phys. Rev. Lett. 114, 096602 (2015)
[4] J. Schliemann, et al. Phys. Rev. Lett. A 64, 022303 (2001).
[5] K.Eckert, et al. Annals of Physics 299, 88-127(2002)
[6] G. Gour. Physical Review A 71, 012318 (2005).
[7] V.Cappellini, et al. Phys. Rev. A., 74. 062322 (2006).

Summary & Outlook
Summary
• We identified the restriction of the SL - invariant monotones to the

symmetric and antisymmetric subspaces as possible measures
for entanglement in systems of identical particles.

• We used G-Concurrence to study the distribution of entanglement
in high-dimensional bipartite systems of bosons and fermions.

Outlook
• Characterization of entanglement in multipartite systems of iden-

tical particles.
• Generalization of the monotone for mixed states of identical par-

ticles
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Abstract
In the last years, entanglement in identical particles (IP) has become crucial
for understanding and exploiting quantum phenomena involving highly corre-
lated indistinguishable systems such as ultra-cold gases in optical lattices [1],
photons in non-linear waveguides [2] and fermions in quantum dots [3]. Howe-
ver, in contrast to the well developed and stablished theory of entanglement
for distinguishable particles, and despite the significant effort invested in it, an
entanglement theory for states of IP still remains in a precarious state. In an
attempt to provide a description of the nature of entanglement in systems of
IP, we propose a measure for the entanglement of bipartite indistinguishable
systems which emerges as a natural restriction of the SL-invariant monotone
for NxN systems of distinguishable particles to the symmetric and antisymme-
tric subspaces. This measure allows the characterization of the entanglement
distribution on particular ensembles of random states of high-dimensional bi-
partite systems of bosons and fermions, which becomes relevant because of
their ability to assess general behaviors with minimal initial information.

ENTANGLEMENT CREATION WITH
IDENTICAL PARTICLES

Entangling two transportable neutral atoms via local spin exchange [1]

Using a mobile optical tweezer, it is possible to prepare and
locally entangle two ultracold neutral atoms, and then separate
them while preserving their entanglement.

ENTANGLEMENT: DISTINGUISHABLE

Bipartite Systems
H1 = H2 = Cn

Entanglement for pure
states

• Product State: ⇢ = ⇢1 ⌦ ⇢2

• Entangled State: ⇢ 6= ⇢1 ⌦ ⇢2

Entanglement depends on the
tensor product structure of the
system.
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The state is entangled if and only if r > 1.

ENTANGLEMENT: IDENTICAL

Consequences of Indistinguishability
Simmetrization Postulate �!No (obvious) tensor product structu-

re for the composite system
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where W = {wij} and wij = �wji. The Schmidt-Slater coeffi-
cients matrix F = [UWUT ] is Block-Diagonal.
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where V = {vij} and vij = vji. The Schmidt-Slater coefficients
matrix B = [UV UT ] is Diagonal.

Slater rank r: number of Schmidt-Slater coefficients different
from zero
Entanglement: A state is entangled if its Slater rank is larger
than one.

ENTANGLEMENT MONOTONES

Distinguishable Case
Consider a pure (d⇥ d)-dimensional state with |iiA, |jiB bases in
each system.
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•Gd (| i) = 0 : The bipartite entanglement does not involve all
the d levels related to each particle.
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For the low-dimensional cases [4,5]:
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For fermonic and bosonic states of higher dimensions the distin-
ction between maximal and non-maximal Slater rank is provided
by the vanishing of the coefficient matrix determinant.

G-CONCURRENCE GENERALIZATION

We extend the G-Concurrence by projecting the measure on the
symmetric and antisymmetric subspaces containing the states of
fermions and bosons.

G-Concurrence for identical particles

Taking into account the normalization conditions on the represen-
tation coefficients, we define the G-Concurrence for a pair of bo-
sons and fermions:

Fermions: GF
2N (|wi) = 4N | det(W )|1/N

Bosons: GB
N (|vi) = 2N | det(V )|2/N

Hence, one can write the G-Concurrence in terms of the Schmidt-
Slater coefficients of the matrices W and V as:

Fermions: GF
2N = 4N |QN

i=1Fi|1/2N

Bosons: GB
N = 2N |QN

i=1Bi|1/N

These expressions consist on a projection of the only SL-invariant
measure for d ⇥ d systems of distinguishable particles and we
think of them as a proper measure for quantifying the entan-
glement capacity of bipartite systems of identical particles. The
restriction made on the symmetric and antisymmetric spaces
allows the monotone to take into account the physical properties
and consequences of indistinguishability in these systems and
give an idea, as the G-Concurrence does for distinguishable
particles, of the amount of entanglement available for using in
information tasks.

RANDOM STATES
Random States allow to assess general behaviors with minimal
prior information.

Uniform Distribution:
• Each state belongs to the subs-

pace with the appropriate sym-
metry.

• Minimum prior knowledge of the
quantum state.

• Normalized states are points on
the surface of a sphere: Every
point has the same probability.

• Measure induced by the Haar
measure.

| i = U | 0i
P (| i) = P (U | 0i)| {z }

Haar’s Invariant Measure
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From the relation between the determinants and the G-
Concurrence, we determine the probability distribution of the en-
tanglement in higher dimensional bipartite systems of identical
particles as:
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N (G) =

ND
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Pc
N (D). (4)

We solve the integral in Eq. (3) numerically for the dimensions
N = 2, 3, 4, 5, 6, where one must take into account in the fermionic
case, the single particles dimension is given by 2N . The expres-
sions were tested by performing numerical simulations. The plots
show an excellent agreement between the results of the distribu-
tions obtained from the moments and the histograms.

Analytical (plotted in solid lines) and numerical results (histograms) for the PDF
of distinguishable and identical particles systems G-Concurrence with dimension
N=2,3,4,5.The dotted lines are the asymptotic distributions for the left limit (G !
0)

Analytical expressions for the asymptotic behavior were determi-
ned for the tails of the distribution: G ! 0, show in the plot above,
and G ! 1, illustrated in the plot bellow.

Asymptotic behavior of the determinants PDF of (left) N = 2 and (right)
N = 3 dimensions for the limit G ! 1

The behavior of the PDF of
entanglement changes with
the system size N , becoming
narrower for increasing value
of N for both the identical
and distinguishable particles
cases. In the limit of large N
we showed the distribution
tends to a delta distribution
concentrated around the
value G = e�1.

PDF for distinguishable (top), fer-
mionic (medium) and bosonic (bot-
tom) systems with single particle di-
mension N=2,3,4,5,6. In the limit of
large system size (N ! 1) the
distributions concentrate around the
mean value 1/e (dotted line).
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symmetric and antisymmetric subspaces as possible measures
for entanglement in systems of identical particles.
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in high-dimensional bipartite systems of bosons and fermions.
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• Characterization of entanglement in multipartite systems of iden-

tical particles.
• Generalization of the monotone for mixed states of identical par-
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outlook
conclusions
• we identified the restriction of the SL-invariant measures to the symmetric and anti-

symmetric subspaces as possible measures for entanglement in systems of 
indistinguishable particles.

• we used G-concurrence to study the distribution of entanglement in bipartite 
systems of indistinguishable particles.

outlook
§ extension of our ideas to multipartite systems (three tangle)
§ extension of our ideas to mixed states


