# Tests of discrete symmetries and quantum coherence with neutral kaons at the KLOE-2 experiment

2<sup>nd</sup> Jagiellonian Symposium on Fundamental and Applied Subatomic Physics Workshop on Discrete Symmetries and Entanglement June 11<sup>th</sup> 2017

Aleksander Gajos

Jagiellonian University, Kraków, Poland







on behalf of the KLOE and KLOE-2 Collaborations

NATIONAL SCIENCE CENTRE

### Outline of the talk

- The KLOE-2 Detector and the DA $\phi$ NE  $\phi$ -factory
- Search for CPT and Lorentz symmetry violation with the  $\Phi \rightarrow K_s K_L \rightarrow \pi^+\pi^- \pi^+\pi^-$  process KLOE results and perspectives for KLOE-2
- Search for quantum decoherence with  $\Phi \rightarrow K_{s}K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$ Status of KLOE analysis and perspectives for KLOE-2
- Test of time-reversal and CPT symmetry in neutral kaon transitions with  $\Phi \rightarrow K_s K_L \rightarrow \pi e \nu \ 3\pi^0 \ (2\pi) \ decays$ Status of the analysis with KLOE and KLOE-2 data

# The DA $\phi$ NE $\phi$ -factory

### Double Annular $\Phi$ -factory for Nice Experiments:

- Located in Laboratori Nazionali di Frascati, Italy
- e⁺e⁻ collider
- separate storage rings for e<sup>+</sup> and e<sup>-</sup> to reduce beam-beam interaction
- fixed energy  $\sqrt{s} = M_\phi \approx 1020 \ {
  m MeV}$

| Decay channel                                | Branching fraction (% units) |
|----------------------------------------------|------------------------------|
| $\phi \rightarrow K^+ K^-$                   | 49.1                         |
| $\phi  ightarrow K^0 ar{K^0}$                | 34.0                         |
| $\phi  ightarrow  ho \pi, \pi^+ \pi^- \pi^0$ | 15.4                         |
| $\phi  ightarrow \eta \gamma$                | 1.3                          |

neutral kaon pairs produced in
 φ decays in an entangled state

Data collected by KLOE at DA $\Phi$ NE:

About 10<sup>10</sup> of

 $\phi$  meson decays

- ◆ 2001-2 ~0.5 fb<sup>-1</sup>
- ◆ 2004-5: ~1.9 fb<sup>-1</sup>





# The KLOE Detector

#### Drift Chamber (DC)



- ◆ gas: 90% He + 10% C<sub>4</sub>H<sub>10</sub>
- $R_{inner} = 25 \text{ cm},$  $R_{outer} = 2 \text{ m}$
- $\sigma_{xy} \approx 150 \,\mu\text{m}, \sigma_z \approx 2 \,\text{mm}$
- $\sigma(p_{T})/p_{T} = 0.4\%$

### Superconducting coil

◆ B = 0.52 T



Spherical beam pipe around interaction point to minimize kaon regeneration Al-Be, R = 10 cm



#### Electromangnetic Calorimeter (EMC)



- lead and scintillating fibers
- covering 98% of  $4\pi$
- barrel with C-shaped endcaps

$$\sigma_t = \frac{54 \, ps}{\sqrt{E[GeV]}} \oplus 140 ps$$

$$\sigma_E = \frac{5.7\% E}{\sqrt{E[GeV]}}$$

$$\sigma_x = \sigma_y = 1 \, cm$$

$$\sigma_z = \frac{1.2 \, cm}{\sqrt{E[GeV]}}$$

# KLOE-2: taking data with the upgraded detector

#### **Detector upgrades:**

- QCALT sampling calorimeter to instrument the final focusing region
   NIMA 617 (2010),105
- CCALT LYSO calorimeter to increase acceptance for γ-s from IP
   NPB 197 (2009), 215

New C-GEM Inner Tracker



- increased acceptance for low-p<sub>1</sub> tracks
- Improved vertexing resolution near the IP



### KLOE-2 is presently taking data

Goal: collect at least 5 fb<sup>-1</sup>



### Neutral kaon interferometry

Neutral kaon pairs at KLOE are produced in an entangled quantum state:

$$\ket{i} = rac{\mathcal{N}}{\sqrt{2}} \left( \ket{\mathrm{K}_{S}(+ec{p})} \ket{\mathrm{K}_{L}(-ec{p})} - \ket{\mathrm{K}_{L}(+ec{p})} \ket{\mathrm{K}_{S}(-ec{p})} 
ight)$$



Decay amplitude for  $K_{s}K_{L}$  decaying into  $f_{1}$  and  $f_{2}$  final states in times  $t_{1}$  and  $t_{2}$ 

Interference term

#### Destructive quantum interference:

 Two kaon may not decay into the same final state at the same time



# CPT and Lorentz symmetry test – principle

Motivation:

Standard Model Extension (Kostelecky)

Anti-CPT theorem (Greenberg):

CPT violation should appear together with Lorentz Invariance breaking

> V. A. Kostelecký Phys. Rev. D 64, 076001 O. W. Greenberg Phys. Rev. Lett. 89, 231602

=> direction-dependent modulation of the δ CPT violation parameter:

$$\delta \simeq i \sin \phi_{SW} e^{i \phi_{SW}} \gamma_K (\Delta a_0 - \vec{\beta_K} \Delta \vec{a}) / \Delta m$$

where  $\Delta a_{\mu}$  are coefficients of the SME Lagrangian part  $\langle K | \delta H_{SME} | K \rangle \sim \beta_K^{\mu} \Delta a_{\mu}(K)$ 

δ can be extracted using interferometric studies with  $\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^-$ 

- + identical final states of both kaon decays ( $\pi^+\pi^-$ )
- kaons can only be ordered in time by direction of momentum w.r.t. a chosen direction
- decay amplitude:

$$I_{f_1} \xrightarrow{\tau_{f_1}} I_{f_1 f_2}(\Delta \tau) \propto e^{-\Gamma |\Delta \tau|} \left[ |\eta_1|^2 e^{\frac{\Delta \Gamma}{2} \Delta \tau} + |\eta_2|^2 e^{-\frac{\Delta \Gamma}{2}} - 2\Re e \left( \eta_1 \eta_2^* e^{-i\Delta m} \right) \right]$$

$$\eta_1 = \varepsilon_K - \delta(\vec{p}_{K_1}) \qquad \eta_2 = \varepsilon_K - \delta(\vec{p}_{K_2})$$

# CPT and Lorentz symmetry test – KLOE analysis

### $\phi \rightarrow K_{s}K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}events$ are divided into:

• 2 angular subsamples 4 subsamples of sidereal time 41o49'25.72'' N  $\cos\theta < 0$  $\cos\theta > 0$ X 12040'19.60'' E Accumulator K₁  $\cos \varphi > 0$ Storage ring X  $\cos \varphi < 0$  $( \uparrow )$ Ζ Ν 10 m Simultaneous fit is performed to  $\Delta \tau$  distributions of all Z 8 subsamples  $I(\Delta \tau)$  (dN/τ<sub>S</sub> p1p0<0 p1p0<0 p1p4<0 p1p4<0 192 data points • 5 free parameters 20 FitData FitData FitData Fit •  $\chi^2$ /ndf = 211/187 t<sub>e</sub>∈[12,18] hr t\_∈ [00,06] hr t\_∈ [06,12] hr t<sub>e</sub>∈ [18,24] hr • Data (P=10%)  $I(\Delta \tau) (dN/\tau_S)$ p1p0>0 p1p0>0  $p_1 p_0 > 0$ Fit Fit Fit Fit **KLOE-2** Collaboration t\_∈ [00,06] hr t ∈ [06,12] hr t\_∈[12,18] hr t ∈ [18,24] hr • Data Data Data Data Phys. Lett. B 730 (2014) 89 -10 0 10 -10 0 10 -10 0 10 -10 0 10  $\Delta \tau (\tau_s)$  $\Delta \tau (\tau_s)$  $\Delta \tau (\tau_s)$  $\Delta \tau (\tau_s)$ 

### CPT and Lorentz symmetry test – results and prospects

#### **KLOE results**



$$\Delta a_0 = (-6.0 \pm 7.7_{stat} \pm 3.1_{sys}) \ 10^{-18} \text{ GeV}$$
  
$$\Delta a_X = (\ 0.9 \pm 1.5_{stat} \pm 0.6_{sys}) \ 10^{-18} \text{ GeV}$$
  
$$\Delta a_Y = (-2.0 \pm 1.5_{stat} \pm 0.5_{sys}) \ 10^{-18} \text{ GeV}$$
  
$$\Delta a_Z = (\ 3.1 \pm 1.7_{stat} \pm 0.6_{sys}) \ 10^{-18} \text{ GeV}$$

KLOE-2 Collaboration Phys. Lett. B 730 (2014) 89

 several orders of magnitude more precise than for other meson systems
 e.g. O(10<sup>-14</sup> GeV) for B<sup>0</sup><sub>(S)</sub> @ LHCb
 (PRL 116 (2016) no.24, 241601)



- presently the most precise measurement in the quark sector of the SME
- ◆ dominated by statistical uncertainties
   → prospects for improvement with KLOE-2 (goal integrated luminosity 5 fb<sup>-1</sup>)

| Prospects with KLOE-2 (5 fb <sup>-1</sup> ) |                                               |  |
|---------------------------------------------|-----------------------------------------------|--|
| Parameter                                   | Uncertainty                                   |  |
| Δa <sub>0</sub>                             | ± 2.2 <sub>stat</sub> x 10 <sup>-18</sup> GeV |  |
| Δa <sub>x</sub> , Δa <sub>y</sub>           | ± 0.4 <sub>stat</sub> x 10 <sup>-18</sup> GeV |  |
| Δa <sub>z</sub>                             | ± 0.5 <sub>stat</sub> x 10 <sup>-18</sup> GeV |  |

### Search for quantum decoherence



Analogously,  $\zeta_{SL}$  may be defined for the K<sub>s</sub>, K<sub>L</sub> state basis

11.06.2017

### Quantum coherence tests – KLOE results



### Quantum coherence tests – KLOE-2 prospects

#### **Prospects with KLOE-2**

- Larger statistics (~5fb<sup>-1</sup>)
- new Inner Tracker
  - $\rightarrow$  improved  $\Delta$ t resolution

Last KLOE result:  $\zeta_{0\bar{0}} = (1.4 \pm 9.5_{stat} \pm 3.8_{syst}) \times 10^{-7}$   $\zeta_{SL} = (0.3 \pm 1.8_{stat} \pm 0.6_{syst}) \times 10^{-2}$ [J.Phys.Conf.Ser. 171:012008 (2009)]



Time resolution improvement expected with the KLOE-2 Inner Tracker will enhance reproduction of the interference pattern

Expected sensitivity on the  $\zeta_{SL}$  and  $\zeta_{0\bar{0}}$  decoherence parameters

• without Inner Tracker • with Inner Tracker



# Symmetry tests in transitions of neutral kaons



[J. Bernabeu, A. Di Domenico and P. Villanueva-Perez, JHEP 10 (2015) 139)]

Measurement of the asymptotic value of these asymmetries (for  $\Delta t \gg \tau_s$ ) provides information on T / CPT symmetry violation



# T and CPT tests in transitions: realization at KLOE-2

Kaon decays used for filtering certain states:

• semileptonic decays  $\overline{K}^{0} \rightarrow \pi^{+}e^{-}\overline{\nu}_{e}$   $K^{0} \rightarrow \pi^{-}e^{+}\nu_{e}$ • hadronic of into 2/3 pic  $K_{-} \rightarrow 3\pi^{0}$  $K_{+} \rightarrow \pi^{+}\pi^{-}\pi^{-}$ 

• hadronic decays into 2/3 pions:  $K_{L}$   $f_{2}$  $K_{-} \rightarrow 3\pi^{0}$  $K_{+} \rightarrow \pi^{+}\pi^{-}$   $K_{S}$   $\Delta t = t_{2} - t_{1}$ 

$$R_2(\Delta t) \sim \frac{\mathsf{I}(\pi^+ \ell^- \bar{\nu}, 3\pi^0; \Delta t)}{\mathsf{I}(\pi \pi, \pi^- \ell^+ \nu; \Delta t)}$$
$$R_4(\Delta t) \sim \frac{\mathsf{I}(\pi^- \ell^+ \nu, 3\pi^0; \Delta t)}{\mathsf{I}(\pi \pi, \pi^+ \ell^- \bar{\nu}; \Delta t)}$$

Determination of the asymmetries (R) requires identification and reconstruction of the following classes of events :



# T and CPT tests in transitions: analysis strategy



- one vertex with 2 tracks required
- cuts on 2-track invariant mass and momentum applied to reject  $K_s \rightarrow \pi^+\pi^-$
- 6+ clusters not associated to DC tracks and with E > 20 MeV present in the EMC
- dedicated trilateration-based reconstruction of  $K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$
- ◆ Time-Of-Flight (TOF) analysis for the e<sup>±</sup> and π<sup>∓</sup> tracks to refine the K<sub>s</sub> →πeν selection



- two vertices with 2 associated tracks required
- cuts on 2-track invariant mass and momentum to select K<sub>s</sub> →π<sup>+</sup>π<sup>-</sup>
- $\bullet$  second vertex close to the epected  $\rm K_{\rm L}$  flight direction
- Time-Of-Flight (TOF) analysis for the e<sup>±</sup> and  $\pi^{\mp}$  tracks to select K<sub>s</sub>  $\rightarrow \pi e \nu$

# $K_L \rightarrow 3\pi^0$ decay reconstruction technique

- using only information in photon interaction points in the EMC
- based on trilateration
- similar to GPS positioning
- Provides an analytical solution
- yields both decay position and decay time at once

 $(T_i - t)^2 c^2 = (X_i - x)^2 + (Y_i - y)^2 + (Z_i - z)^2$  $i = 1, \dots, 6$ 

Resolution further improved with a kinematic fit with constraints:





### Preliminary results with KLOE data



# Summary

- The KLOE experiment has provided results on:
  - CPT and Lorentz invariance
  - quantum decoherence



- More analyses of KLOE data are in progress including:
  - refinements of previous KLOE result on quantum decoherence search
  - novel direct tests of T and CPT in neutral kaon transitions
    - The KLOE-2 experiment is over half-way in its data taking campaign



- Tests of discrete symmetries and QM constitute a major goal in the KLOE-2 physics programme
  - data sample of at least 5 fb<sup>-1</sup> as well as the upgraded detector will improve sensitivity for all the above measurements



**Backup Slides** 

# Analysis strategy

- kaons are ordered in time by their z momentum component
- dataset is divided into 2 samples
  - kaon with  $\cos\theta > 0$  having:  $p_{k}p_{\phi} > 0$
  - kaon with  $\cos\theta > 0$  having:  $p_k p_{\phi} < 0$



next, dataset is divided into 4 sidereal time bins

#### 2 angular bins x 4 time bins = 8 samples

Simultaneous fit is performed to  $\Delta \tau$  distributions of all 8 samples to extract the  $\Delta a_{\mu}$  coefficients.

# KLOE and terrestrial reference frames



 $+\beta_K \Delta a_Y \sin \vartheta \sin \varphi \cos \omega_E T_{sid}$ 

 $\vartheta, \phi$  – polar and azimuthal angles of K momentum in LAB frame

accounting for the sidereal

time dependence due to

the Earth rotation

# Analysis strategy

Event selection requirements:

- 2 reconstructed vertices with 2 tracks and:
  - $|M_{rec} m_K| < 5 \text{ MeV}$  (assuming charged pion mass hypothesis)
  - $\sqrt{E_{miss}^2 + |\vec{p}|_{miss}^2} < 10 \text{ MeV}$
  - $-50 \text{ MeV}^2 < M_{miss}^2 < 10 \text{ MeV}^2$
  - $|p_K^{rec}_{1,2} p_K^0| < 10 \text{ MeV}$
- $\Delta \tau \in [-12\tau_S; 12\tau_S]$  to avoid kaon regeneration on beam pipe





applied to improve kaon decay length reconstruction



Residual background contamination:

- kaon regeneration (2%)
- $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$  (0.5%)

Resulting efficiency:

- almost flat except  $\Delta \tau / \tau_s \sim 0$
- due to worse tracking and vertexing efficiency at  $\Delta \tau / \tau_s \sim 0$

 $\chi^2 \text{ cut}$  $\vartheta_{\pm} \text{ cut}$  $p_z \text{ cut}$ 

# Time-dependent decay amplitudes fit



• χ<sup>2</sup>/ndf = 211/187 (P=10%)

# Principle of the direct T test



• Kaon decays are used for filtering certain flvour and CP-definite states:

• quantum entanglement used for identifying initial state for the transition:

11.06.2017

# $K_s K_l \rightarrow \pi e \nu \ 3\pi^0 - status \ of selection$

Results obtained with full 2004-2005 data sample (1.7fb<sup>-1</sup>) and corresponding MC.



Signal selection efficiency:



Selected sample composition: 90% -  $K_s \rightarrow \pi e \nu$  and  $K_1 \rightarrow 3 \pi^0$  (signal)

6.6% -  $K_s \rightarrow \pi^+\pi^-$  and  $K_L \rightarrow 3\pi^0$ 

1.8% -  $K_{_S}{\rightarrow}\,\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\gamma$  and  $K_{_L}{\rightarrow}3\,\pi^{\scriptscriptstyle 0}$ 

1.6% - other background components

| process                                              | % in  |
|------------------------------------------------------|-------|
| $K_s \rightarrow \pi^+ \pi^-$                        | 3.9 % |
| $K_s \rightarrow \pi^+\pi^- \rightarrow \pi \mu \nu$ | 2.7 % |
| $K_s \rightarrow \pi^+\pi^-\gamma$                   | 1.8 % |



11.06.2017