Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

Raffaele Del Grande

UNIWERSYTET

JAGIELLOŃSKI

KRAKOWIE

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI FRASCATI

J-PET

On the behalf of the J-PET collaboration

3rd Symposium on Positron Emission Tomography and 1st Symposium on Boron Neutron Capture Therapy

Krakòw, 10th - 15th September 2018

Goal of the analysis

First experimental o-Ps Dalitz plot determination

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

Outline

• Run-5 data analysis:

 \rightarrow 3 hits and 4 hits selection

• Monte Carlo simulations:

 \rightarrow signal (o-Ps \rightarrow 3 γ)

 \rightarrow background (e⁺e⁻ annihilation + scatterings)

• Preliminary fits

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

Run-5 data analysis

Small Chamber measurements:

Run-5 data analysis

Run-5 data analysis

Hits in the scintillators:

→ **3 hits**: γ s from the o-Ps decay (signal) → **4 hits**: 3 γ s from the o-Ps + prompt γ (signal)

Analyzed sample: 996 data files \rightarrow ~ 8 h

Background: scatterings in the strips

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

CUT 1: selection based on the energy deposited in the scintillators (using the TOT information)

 $TOT_1 < 25 \text{ ns} \& TOT_2 < 25 \text{ ns} \& TOT_3 < 25 \text{ ns}$

Hits: $(x^{Hit}, y^{Hit}, z^{Hit}, t^{Hit}) \rightarrow$ Using the coordinates of the 3 Hits the decay plane is found.

CUT3: The three photons are emitted at the same time

- distance from the annihilation point $r_i = sqrt(x_i^{Hit 2} + y_i^{Hit 2} + z_i^{Hit 2})$
- annihilation time determination for γ_i $t_{ai} = t_i^{Hit} - r_i / c$

•
$$ta = \frac{1}{3}(ta1 + ta2 + ta3)$$

$$\sigma_{ta} = \mathsf{sqrt}(\frac{1}{3} \left[(t_{a1} - t_a)^2 + (t_{a2} - t_a)^2 + (t_{a3} - t_a)^2 \right])$$

 $\sigma_{ta} < 1$ ns

CUT4: Momentum conservation ($\theta_{12} < \theta_{23} < \theta_{31}$)

Dalitz plot and θ_{23} vs θ_{12}

Photons are ordered by annihilation time: $t_{a1} < t_{a2} < t_{a3}$

1. Signal:

 $o-Ps \rightarrow \gamma_1 \gamma_2 \gamma_3 \qquad \qquad (Hit_1, Hit_2, Hit_3) = (\gamma_1, \gamma_2, \gamma_3)$

2. Background 1:

 $o-Ps \rightarrow \gamma_1 \gamma_2 \gamma_3 + scattering$

$$(\mathsf{Hit}_{1}, \mathsf{Hit}_{2}, \mathsf{Hit}_{3}) = \{ (\gamma_{1}, \gamma_{1}, \gamma_{3}), (\gamma_{1}, \gamma_{1}, \gamma_{1}), \dots \}$$

3. Background 2:

 $e^+ e^- \rightarrow \gamma_1 \gamma_2 + scattering$

(Hit₁, Hit₂, Hit₃) = { (
$$\gamma_1$$
, γ_1 , γ_2), (γ_1 , γ_1 , γ_1), }

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

80

60

Dalitz plot determination for the o-Ps \rightarrow 3 γ decay with J-PET

Dalitz plot determination for the o-Ps \rightarrow 3 γ decay with J-PET

1. Signal:

 $o-Ps \rightarrow \gamma_1 \gamma_2 \gamma_3 \qquad \qquad (Hit_1, Hit_2, Hit_3) = (\gamma_1, \gamma_2, \gamma_3)$

Additional requirement: $E_1 + E_2 + E_3 > 1020 \text{ keV}$

Additional requirement: $|p_{1x} + p_{2x} + p_{3x}| < 0.2 \text{ keV/c}$ $|p_{1y} + p_{2y} + p_{3y}| < 0.2 \text{ keV/c}$ $|p_{1z} + p_{2z} + p_{3z}| < 0.2 \text{ keV/c}$

2. Background 1:

 $o-Ps \rightarrow \gamma_1 \gamma_2 \gamma_3 + scattering$

 $(Hit_{1}, Hit_{2}, Hit_{3}) = \{ (\gamma_{1}, \gamma_{1}, \gamma_{3}), (\gamma_{1}, \gamma_{1}, \gamma_{1}), \dots \}$

3. Background 2:

 $e^{+} e^{-} \rightarrow \gamma_{1} \gamma_{2} + \text{scattering} \qquad (\text{Hit}_{1}, \text{Hit}_{2}, \text{Hit}_{3}) = \{ (\gamma_{1}, \gamma_{1}, \gamma_{2}), (\gamma_{1}, \gamma_{1}, \gamma_{1}), \dots \}$

Efficiencies:

The same cuts used for the data are applied (except for the cut on the TOT):

- decay plane contains the annihilation point \rightarrow |d| < 2 cm 1.
- same time of annihilation for the 3 $\gamma \rightarrow \sigma_{t} < 1$ ns 2.
- $\theta_{12} + \theta_{23} > 180$ 3. momentum conservation for 3γ from o-Ps \rightarrow
- 4. E_{dep} > 50 keV (threshold)

Signal:

- 1 x 10⁸ generated
- 1400 detected
- 1400 selected

Background 1:

- 1×10^8 generated
- 13347 detected
- 1356 selected

Background 2:

- 1 x 10⁸ generated
- 24202 detected
- 9413 selected

Expected number of o-Ps \rightarrow 3 γ events:

$$N_{o-Ps} = A \times f_{o-Ps \to 3\gamma} \times eff \times t$$

A = annihilation rate = 10^6 for 10 MBq source and $E_{dep} > 50$ keV $f_{o-Ps \rightarrow 3\gamma} = 28.6 \%$ (in porous polymer XAD-4) eff = 1.4×10^{-5} t = 29221 seconds (~ 8 hours) \rightarrow 996 data files $\rightarrow N_{o-Ps} = 117000$ (about 8% of the events)

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

CUT: $\theta_{12} + \theta_{23} > 180$

1. Signal: $o-Ps \rightarrow \gamma_1 \gamma_2 \gamma_3$

SIGNAL

- **2.** Background 1: o-Ps $\rightarrow \gamma_1 \gamma_2 \gamma_3$ + scattering
- 3. Background 2: $e^+ e^- \rightarrow \gamma_1 \gamma_2$ + scattering

BACKGROUND 2

BACKGROUND 1

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

Fit of the data

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

Fit of the data

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

Same cuts as before but:

CUT 1: selection based on the energy deposited in the scintillators (using the TOT information) also for the prompt γ

Photons are ordered by annihilation time: $t_{a0} < t_{a1} < t_{a2} < t_{a3}$

Dalitz plot determination for the o-Ps \rightarrow 3 $\gamma\,$ decay with J-PET

Additional Cut \rightarrow Selection based on the o-Ps lifetime

In vacuum:

- direct e+e- annihilation ~ 400 ps
- para-positronium lifetime ~ 125 ps
- ortho-positronium lifetime ~ 142 ns

lifetime =
$$t_a - t_{a0} > 10$$
 ns

Next steps

- Monte Carlo simulations for the scatterings in the small chamber
- Include the detector time and energy resolutions

• Same procedure for 4 hits events