Taras Shevchenko National University of Kyiv

#### Generation and application of Maxwellian Neutron Spectra for BCNT

#### V. Basenko, N. Dzysiuk, I. Kadenko





BCNT-1, Krakow September 2018

# Outline

- Objective
- Generation of Maxwell-Boltzmann neutron spectra
- <sup>12</sup>C(d,n)<sup>13</sup>N reaction as a neutron source
- Generation of M-B spectra with low-voltage accelerators
- Problematic issues
- A possible BCNT application
- Summary / perspective

# Objective



- Validation of Evaluated Data
- Possibility to perform BNCT



*Mastinu P.F. Martin Hernandes G., Praena J.* A method to obtain a Maxwell– Boltzmann neutron spectrum at kT=30 keV for nuclear astrophysics studies // Nuclear Instruments and Methods in Physics Research A – 2009 – vol. 601 – p. 333 - 338.

## Motivation





Agence pour l'énergie nucléaire Nuclear Energy Agency

| Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| THE NEA HIGH PRIORITY NUCLEAR DATA REQUEST LISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 1RECONTRUCTOR NUCLEAR DATA STANDARDS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 1REQUERMENTS FOR DOSINGERY REACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| Information accesses<br>1 A Detection accesses<br>1 A Dete |   |
| A. Diversity interchine 14   A. Diversity interchine 14   A. Diversity interchine 17   A. Diversity interchine 17   A. Diversity interchine 18   A. Diversity interchine 19   A. Diversity interchine 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 4 17 secondar secondar<br>4 18 General secondar 18 4 6 6 6 7 7 7 7 8 4 7 8 7 8 7 8 7 8 7 8 7 8 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - |

Some actinides for Gen-IV: Pu-239 fission in 1 keV – 1 MeV Pu-241 fission in 1 keV – 1 MeV U-238 capture in 2 – 200 keV Am-243 capture in fast and thermal energy range Am-241fission in fast energy range

P. Oblozinsky, NNDC

Often large discrepances between data bases (ENDF,JENDL,JEFF,BRONDL) for many already mesured isotopes. No mesurements for some important isotopes (mainly radioactive)





# <sup>12</sup>C(d,n)<sup>13</sup>N reaction as a neutron source (alternative way)

MB spectrum generation with the voltage modulation



## Methodology of calculations

Shape of neutron spectrum

$$N(E_n,\theta) = \frac{1}{\pi} \int_0^{\pi} d\psi \int_0^R C(x) dx \int_0^{\phi_{\text{max}}} L_x(\phi) d\phi \int_0^{E_0} \sigma(E',\theta) G\left(E' - \frac{E_x}{S_x}\right) \delta\left[E_n - f_n(E',\omega)\right] dE$$

$$N(E_n,\theta) = N_0 \int_0^{E_0} \sigma(E',\theta) \delta[E_n - f_n(E',\omega)] dE'$$

 $N_0$  – number of nucleai  ${}^{12}C$  in the target.

$$E_{n}(\theta) = \frac{m_{d}m_{^{12}C}}{\left(m_{n} + m_{^{13}N}\right)^{2}} \left\{ \cos\theta \pm \sqrt{\cos^{2}\theta + \frac{\left(m_{n} + m_{^{13}N}\right)\left[\left(m_{^{13}N} - m_{d}\right)E_{d} + m_{^{13}N}Q\right]}{m_{d}m_{^{12}C}E_{d}}} \right\}$$

# <sup>12</sup>C(d,n)<sup>13</sup>N reaction as a neutron source



Neutron spectra and the law of voltage modulation in time

## $^{12}C(d,n)^{13}N$ reaction as a neutron source



Neutron spectra and the law of voltage change in time with a small step adjustment

# Generation of M-B spectra with lowvoltage accelerators



Main characteristics:

- Neutrons are generated in reactions T(d,n)<sup>4</sup>He and D(d,n)<sup>3</sup>He
- Average neutron energy E = 14.7 MeV and 2.8 MeV
- Average neutron flux density 1.8.10<sup>9</sup> and 3.10<sup>8</sup> n/(s.cm<sup>2</sup>)

Generation of M-B spectra with lowvoltage accelerators

- Algorithm of MB spectra generation by highvoltage modulation
- Advantage much higher beam current
- Thick target (higher yield)

#### Carbon neutron production target



| Heating time, | Temperature of | Neutron flux,  |
|---------------|----------------|----------------|
| hour          | heating, °C    | relative units |
| Before        | 20             | 8500           |
| heating       |                |                |
| 1             | 150            | 1600           |
| 1             | 200            | 1200           |
| 1             | 250            | 700            |
| 1             | 300            | 700            |
| Background    |                | 700            |

Atomic and molecular component could be obtained by means of magnet separation Target dimension: d= 45 mm, water cooling system. Problematic issue

No reliable data for the <sup>12</sup>C(d,n) reaction CS

The only option is theoretical calculations (TENDL)

Algorithm to make simulation of this neutron spectrum

Using TALYS + the code that can do a transport calculations. Collaboration with Spain is ongoing ...

## BCNT possible application





<sup>10</sup>B(n,α)<sup>7</sup>Li + MBNS (10 - 60 keV): I=10 mA,  $\sigma$  = 1.14 b  $\Rightarrow$ φ= 1.2\*10<sup>6</sup> n/cm<sup>2</sup>/s

<sup>13</sup>C is low abundance therefore<sup>12</sup>C is a possible alternative way !

# Summary

- A possibility to generate a well characterized neutron spectrum was studied
- <sup>12</sup>C is an alternative way to <sup>7</sup>Li and could be used for performing BCNT
- Carbon target was developed
- Advantage : simplicity and accuracy
- Estimated production of alpha particles can be performed



# Thanks for your attention!