# Estimating the NEMA characteristics of the J-PET tomograph using the GATE package

#### Paweł Kowalski pawel.kowalski@ncbj.gov.pl

National Centre for Nuclear Research Świerk Computing Centre 3rd Symposium on Positron Emission Tomography

10th September 2018





### Contents

#### 1 Introduction

- NEMA and GATE
- Simulated geometries
- 2-level data selection method

#### 2 Sensitivity

#### **3** Spatial Resolution

#### Scatter Fraction and NECR

- Scatter Fraction
- NECR

#### 5 Summary

- Conclusions
- Comparison to commercial PET scanners





Sensitivity Spatial Resolution Scatter Fraction and NECR Summary NEMA and GATE Simulated geometries 2-level data selection method

### Introduction: NEMA and GATE

NEMA - National Electrical Manufacturers Association

Ther norm NEMA-NU-2 defines following performance characteristics:

- Sensitivity
- Spatial Resolution
- Scatter Fraction and NECR
- Image Quality

GATE – GEANT4 Application for Tomographic Emission

Simulations were performed at CIS cluster (National Centre for Nuclear Research, Świerk Computing Centre).





Sensitivity Spatial Resolution Scatter Fraction and NECR Summary NEMA and GATE Simulated geometries 2-level data selection method

#### Introduction: Simulated geometries

#### J-PET - Jagiellonian PET



Figure: Configurations of simulated detecting systems which may differ with number of layers of the detector and their diameters (D), thickness and length of the scintilator strips (L) and type of readout (D)



Sensitivity Spatial Resolution Scatter Fraction and NECR Summary NEMA and GATE Simulated geometries 2-level data selection method

### Introduction: 2-level data selection method 1/4

#### 1st level: Coincidence defintion

- time window 3 ns
- exactly 2 scatterings with deposited energy bigger than fixed energy threshold equal to 200  $\,\rm keV$
- any number of scatterings with deposited energy bigger than noise threshold equal to 10 keV



Figure: Different types of coincidences: a) true, b) phantom-scattered, c) detector-scattered, d) accidental



РЕТ

Sensitivity Spatial Resolution Scatter Fraction and NECR Summary NEMA and GATE Simulated geometries 2-level data selection method

### Introduction: 2-level data selection method 2/4

- 2nd level: Selection based on times and angles differences between subsequent hits in the coincidence
  - $\Delta angle =$  central angle between places of scatterings
  - $\Delta time = |t1 t2|$



Figure: (left) simulation of the rod source placed in the radial distance of 25 cm from the axial of the scanner; the scatter fraction phantom was placed in the centre of the scanner; true coincidences are placed over the red line; (right) angles differences for extreme cases



NEMA and GATE Simulated geometries 2-level data selection method

Introduction to NEMA characteristics: 2-level data selection method 3/4



Figure: Results of the 2nd level selection for example simulations for 2 activities 1 MBq and 2000 MBq





Sensitivity Spatial Resolution Scatter Fraction and NECR Summary NEMA and GATE Simulated geometries 2-level data selection method

### Introduction: 2-level data selection method 4/4



Figure: Reduction of events (2nd level selection) in function of activity concentration for NECR simulations



### Sensitivity: Definitions

**Sensitivity** of a positron emission tomograph is expressed as the rate in counts per second that true coincidence events are detected for a given source strength.

Then Sensitivity may be calculated as: **Sensitivity** = T/time/activity

**In measurements**, the material surrounding the source, attenuates created gamma rays, prohibiting a measurement without interfering attenuation. To arrive at an attenuation free measurement, successive measurements are made with a uniform line source surrounded by known absorbers. From these measurements, the sensitivity with no absorber can be extrapolated.

In simulations, we can obtain sensitivity with no absorber directly, without simulating tube phantoms.

We can use simple linear source with length 70 cm in the centre of the AFOV.



### Sensitivity: Results



Figure: Sensitivities for 18 simulated geometries (thickness = 7 mm)

Paweł Kowalski





### Sensitivity: Results



Figure: Sensitivity profiles grouped by the number of layers; legend: D = 75 cm (- -), D = 85 cm (-), D = 95 cm (--), 1 layer (thin lines), 2 layers (thick lines), L = 20 cm (red), L = 50 cm (black), L = 100 cm (blue)





### Spatial Resolution: Definitions

Spatial resolution is an ability of the system to distinguish between two points after image reconstruction

Algoritm of obtaining the Spatial Resolution:

- point source of gamma photons is located at 6 points inside the Axial Field of View of the system
- 2 at least 100.000 prompt counts is acquired in each position
- image reconstruction is performed for each of locations (algorithm of reconstruction should be Filtered Back Projection (FBP))
- FWHM is calculated for 1D profiles crossing voxel of the reconstructed image in all three dimensions for each position of the source





### Spatial Resolution: Definitions

#### STIR - Software for Tomographic Image Reconstruction

STIR is Open Source software for use in tomographic imaging. Its aim is to provide a Multi-Platform Object-Oriented framework for all data manipulations in tomographic imaging. Currently, the emphasis is on (iterative) image reconstruction in PET and SPECT, but other application areas and imaging modalities can and might be added.

http://stir.sourceforge.net/





### Spatial Resolution: Results



Figure: Reconstruction of the point source placed in position of (1,0,0) cm for 2 types of readout: SiPM and WLS (L = 50 cm, thickness = 4 mm) [reconstruction performed by R. Shopa using the STIR software]



### Spatial Resolution: Results



Figure: Spatial resolution in three directions - the radial, tangential and axial. The geometry was fixed to the single layer chamber with the diameter of 85 cm and strips with length of 50 cm and thickness 7 mm. Silicon photomultipliers (SiPM) were used as photodetectors.





### Spatial Resolution: Results



Figure: Axial resolution for different types of detectors attached to scintillator strips and two axial positions as a function of radial position of the source. Presented results were obtained for the single-layer geometry with the diameter of 85 cm and strips with length of 50 cm and thickness 7 mm.

Paweł Kowalski





### Spatial Resolution: Results



Figure: Spatial resolution for 3 lengths and 2 thicknesses of scintillator strips for silicon photomultipliers (left) and silicon photomultipliers with the WLS strips (right).





Scatter Fraction NECR

#### Scatter Fraction: Definitons

**Scatter Fraction** is a dimensionless ratio of scattered coincidence events to the sum of scattered and true coincidence events in a defined region of interest in the scanner's field of view (definition from the NEMA norm)

SF = S/(S+T)

S – number of scattered coincidences T – number of true coincidences





Scatter Fraction NECR

#### Scatter Fraction: Definitons

In the J-PET scanner there are not only coincidences scattered in the phantom but also scattered in the scintillating strips.

Types of coincidences:

- true true coincidence
- g psca phantom-scattered coincidence
- Isca detector-scattered coincidence
- acci accidental coincidence

```
SF<sub>1</sub> = psca/(true+psca)
SF<sub>2</sub> = (psca+dsca)/(true+psca+dsca)
```

Previous studies show that if we use presented definition of the coincidence (2 hits with energies over the energy threshold equal to 200 keV), then the difference between  $SF_1$  and  $SF_2$  is negligible.



Scatter Fraction NECR

### Scatter Fraction: Definitons

Details of measurements from the NEMA norm:

- Phantom solid cylinder composed of polyethylene with a gravity 0.96+-0.01, outside diameter 203+-3 mm, length 700+-5 mm; hole with diameter 6.4 mm is drilled parallel to the central axis of the cylinder at a radial distance of 45 mm
- 2 Source line source; polyethylene tube with diameter 4.8 mm filled with a known activity
- Oata collection 500.000 counts
- Oata processing using analysis of sinograms





Figure: Scatter Fraction phantom



### Scatter Fraction: Definitons

Algoritm of obtaining the Scatter Fraction:

- Space inside the J-PET detector is divided into N virtual slices (conventional scanners have natural physical slices that come from sizes of the scintillating crystals)
- **2** Oblique sinograms  $(N^2)$  are obained for all combinations between each pair of virtual slices
- **③** Single Slice Rebinning (SSRB) algorithm is used to obtain 2N-1 rebinned sinograms
- 4 All rebinned sinogram are summed
- For the summed sinogram all projections are aligned to put maximum values at zero and they are summed
- **③** After summing, values of obtained profile at distances  $\pm$  2 mm from zero are calculated
- $\blacksquare$  The area of the profile over tle line crossing two points at  $\pm$  2 mm is treated as true coincidences, below this line as scattered coincidences



Similar Control of sinogram; (right) oblique [red] and normal [blue] sinograms



Scatter Fraction NECR

#### Scatter Fraction: Results



Figure: (left) sinogram for geometry with 50 cm strips and activity equal to 1 MBq; (right) alligned to zero (for each projection = sinogram row) and summed sinogram; true coincidences are over the red line while scattered below



Scatter Fraction NECR

### Scatter Fraction: Results

| Nr of layers | L = 20 cm | $L = 50 \ cm$ | L = 100 cm |
|--------------|-----------|---------------|------------|
| 1            | 36.0%     | 35.8%         | 34.8%      |
| 2            | 35.1%     | 35.6%         | 34.7%      |

Figure: Scatter fraction for six geometries calculated using sinograms analysis

| Nr of layers | L = 20 cm | $L = 50 \ cm$ | L = 100 cm |
|--------------|-----------|---------------|------------|
| 1            | 49.1%     | 49.1%         | 47.6%      |
| 2            | 51.1%     | 51.2%         | 50.1%      |

Figure: Scatter fraction for six geometries calculated using true Monte Carlo





### **NECR:** Definitions

Noise Equivalent Count Rate (NECR) - the purpose is to measure the effects of the generation of random events at several levels of source activity

 $\mathsf{NECR} = T^2/(T + S + R)$ 

- T true coincidences
- S scattered coincidences
- R random (accidental) coincidences

Method:

- similar to method of obtaining SF
- the difference: coincidences treated in SF algorithm as scattered here contain also random coincidences



Scatter Fraction NECR

### NECR: Results



Figure: In first row there are rates for single layer geometries while in second row for 2-layer geometries; in first column there are rates for L=20cm, next for L=50cm and L=100cm (true Monte Carlo)



Scatter Fraction NECR

### NECR: Results



Figure: NECR calculated using two methods: (left) using true MC method and (right) using the method specified in the NEMA norm (sinograms analysis). Difference between the method based on sinograms analysis and true MC method is caused by the usage of the NEMA defined radial cut at 12 cm from the axis of the scanner [Yang, 2015].

The NECR peak shows the optimal activity concentration, for which, there is the best ratio

#### Summary: Conclusions

- The best spatial resolutions were obtained for the 4 mm thick strips and the SiPM readout with additional layer of the WLS strips.
- Adding second cylindrical layer of strips seems to have slight influence on the spatial resolution and the scatter fraction, but it strongly improves the sensitivity and the NECR characteristics. Increasing the diameter of the detecting chamber worsens the sensitivity of the scanner.
- The longer the strips, the higher the sensitivity, the higher the NECR peak (which is obtained for smaller value of the activity concentration) and the smaller the scatter fraction. On the other hand, without WLS strips, the axial resolution worsens with the growth of strips length.
- In order to take into account all above figures of merit in process of projecting the J-PET prototype, the compromise must be found between the geometrical acceptance, the background, the image quality and the production cost.
- It seems that from all tested geometries, the best results were obtained for the double-layer geometry built from strips with length of 100 cm and thickness of 4 mm, the diameter equal to 75 cm and the SiPM photomultipliers with the additional layer of the WLS strips used as readout.

## Article summarizing presented results was published in the PMB journal and is available online: http://iopscience.iop.org/article/10.1088/1361-6560/aad29b/meta.



Conclusions Comparison to commercial PET scanners

Summary: Comparison to commercial PET scanners

|                       | GE Discovery IQ<br>(PET/CT)m, 5 rings<br>(AFOV = 260 mm)              | Siemens Biograph<br>mCT (PET/CT)<br>(AFOV = 218 mm) | Philips Vereos<br>PET/CT<br>(AFOV = 164 mm)                      | J-PET (L = 100 cm,<br>Thickness = 4 mm,<br>D = 75 cm, 2 layers,<br>SiPM+WLS readout) |
|-----------------------|-----------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Spatial<br>resolution | in range of 4.2 mm<br>at 1 cm<br>to 8.5 mm at 20 cm                   | from 4.4 mm to 5.9 mm                               | from 3.99 mm to<br>4.64 mm                                       | at the centre: 3mm<br>(radial, tangential),<br>6 mm (axial)                          |
| Sensitivity           | measured at the<br>centre and at 10 cm<br>is 22.8 and 20.4<br>cps/kBq | 9.7 cps/kBq in the<br>centre<br>of the AFOV         | at the centre is 22.1<br>cps/kBq and at 10<br>cm is 22.2 cps/kBq | at the centre is<br>14.9 cps/kBq                                                     |
| Scatter<br>fraction   | 36.2 %                                                                | 33.2%                                               | 31.6 %                                                           | 34.7 %                                                                               |
| NECR                  | peak of 124 kcps<br>at 9.1 kBq/cc                                     | peak of 180.3 kcps<br>at 29 kBq/cc                  | peak of 157.6 kcps<br>at 52.8 kBq/cc                             | peak of 300 kcps<br>at about 40 kBq/cc                                               |



Conclusions Comparison to commercial PET scanners

Thank you for attention



