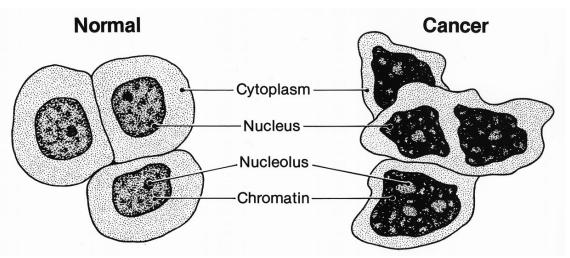


Studies of positronium atoms in cardiac myxoma tumors and cultured cell lines - biomedical application of PALS

Ewelina Kubicz 13.09.2018

3rd Symposium on Positron Emission Tomography Kraków

- 1) Motivation
- 2) Cancer vs. normal cells
- 3) PALS studies of tumor and normal tissues in vitro
- 4) First PALS studies of human tissues in vitro with J-PET
- 5) PALS studies of cells cultures in vitro
- 6) Summary and future plans


Motivation

- → Determination of early and advanced stages of carcinogenesis by observing changes in biomechanical parameters between normal and cancer cells
- → PALS parameters (lifetime, intensity, radius) are related with temporal dynamics of nanostructures in whole cells and tissues

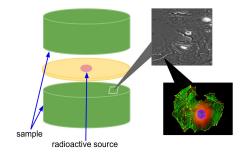
→ Combining J-PET scanner with PALS technique – better diagnostic tool

Cancer vs normal cells

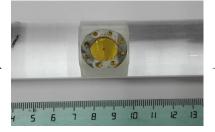
- → Large cytoplasm
- → Single nucleus and nucleolus
- → Fine chromatin
- → Smaller number of dividing cells
- → Similar in shape and size
- → Organized arrangement of cells
- → Apoptosis

- → Small cytoplasm
- → Multiple and large nucleus and nucleolus
- → Coarse chromatin
 - → Large number of dividing cells
 - → Variation in cells shape and size
- → Disorganized arrangement of cells
- → Immortal

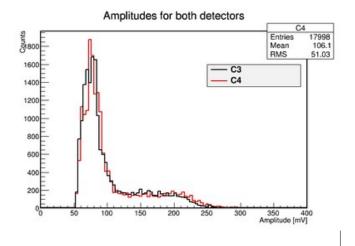
en.uj.edu.pl

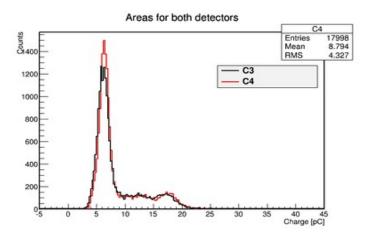

https://visualsonline.cancer.gov/details.cfm?imageid=2512

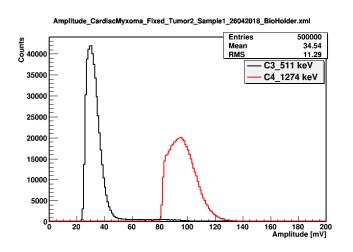
PALS setup

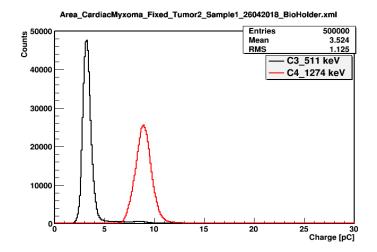

- → Two BaF₂ detectors with resolution ~250 ps
- ightarrow ²²Na source in Kapton foil with activity ~ 1 MBq sandwich between sample
- → PALS spectra analysis with PALS_Avalanche program developed by K. Dulski J-PET collaboration


K. Dulski et. al., Analysis procedure of the positronium lifetime spectra for the *J-PET detector, Acta Phys. Polon. B48 no. 10, 1611 (2017)*









PALS setup

Cardiac Myxoma

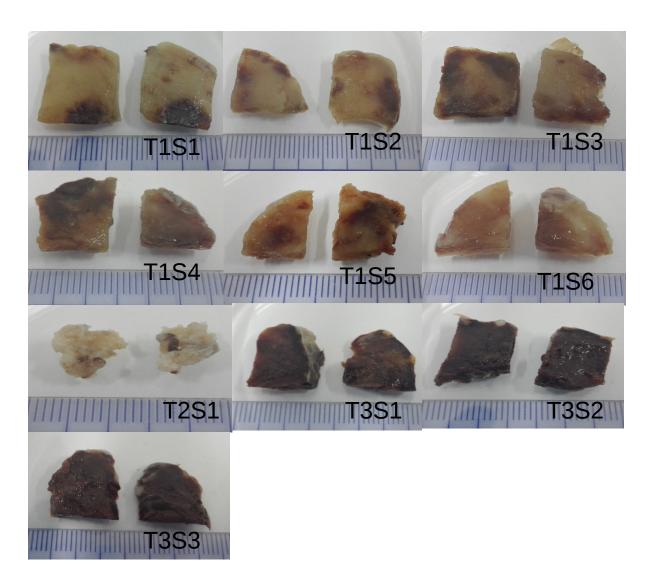
→ primitive connective tissue tumor (benign), very rare in comparison to metastatic tumors

- \rightarrow 75 % of them are located in the left atrium
- → occur mainly in people over the age of 50

Imonary Artery
rium
Imonary Veins
Bicuspid) Valve
Semilunar Valve
nary Semilunar Valv
iary communiar vari
ntricle
ry Muscles
ntricular Septum
lium
dium Irdium

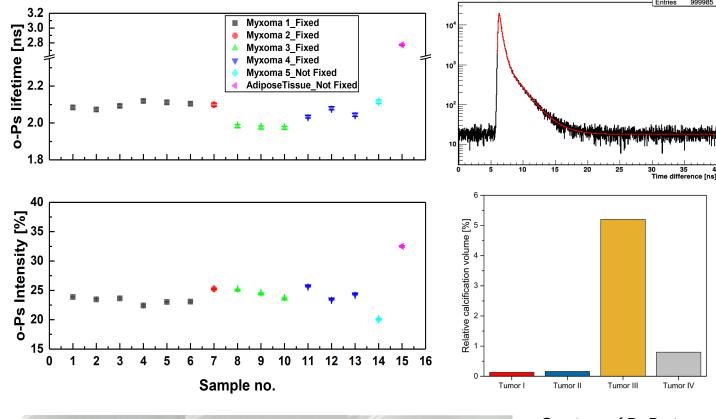
Types	Solid	Papillary
Surface	smooth	irregular
Mass	firm	soft, gelatinous
Calcification	+	-
Embolism	-	+

Fixed in formaldehyde:


- 1) Myxoma I (6 samples for study, around 2 mm thick) 72 years old women
- 2) Myxoma II (1 sample) 61 year old men
- 3) Myxoma III (3 samples) 59 year old men
- 4) Myxoma IV (3 samples) 54 year old woman **Not fixed (fresh):**
- 5) Myxoma V (1 sample) 77 year old men measured within 4 hours after the surgery

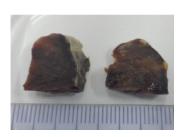
en.uj.edu.pl

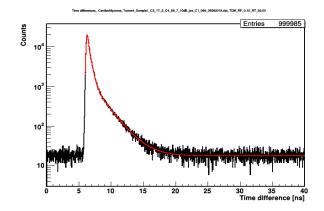
https://healthjade.com/human-heart-health/


Cardiac Myxoma

Cardiac Myxoma - PALS

- → Samples fixed in formaldehyde → not decomposing/changing in time
- → Fresh sample measured within 4 hours after surgery
- \rightarrow Time of measurement ~70-80 min \rightarrow 1 mln counts



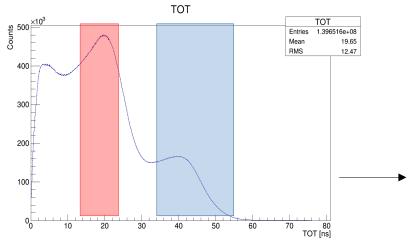

Courtesy of Dr Bartosz Leszczyński, Dr hab. Roman Pędrys, Dr Andrzej Wróbel

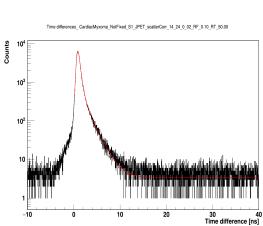
Cardiac Myxoma – PALS – Kraków vs. Lublin

- → Samples fixed in formaldehyde → not decomposing/changing in time
- → Time of measurement ~70-80 min → 1 mln counts
- ightarrow The same sample measured on PALS setups both in Lublin and in Kraków

	In Lublin	In Kraków
Lifetime p-Ps [ns]	0.207(97)	0.123 (25)
Intensity p-Ps [%]	21.67(1.30)	18.55(97)
Lifetime free-Ps [ns]	0.428(85)	0.420(19)
Intensity free-Ps [%]	51.49(1.20)	55.73(67)
Lifetime o-Ps [ns]	2.03(08)	2.03(02)
Intensity o-Ps [%]	26.84(88)	25.72(79)
FitVariance/R2	0.9859	0.9997

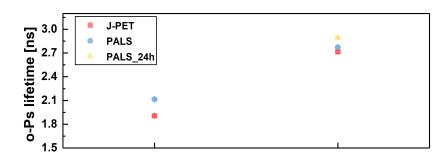
Cardiac Myxoma – JPET vs PALS

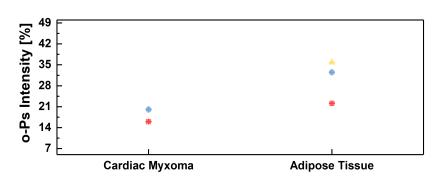

- → Samples after extraction from patient were placed in sterile container with DMEM medium supplemented with 10% FBS, Penicillin/Streptomycin and HEPES buffer
- → Fresh sample measured within 4 hours after surgery
- \rightarrow Time of measurement ~70-80 min \rightarrow 1 mln counts

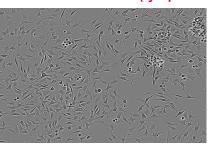


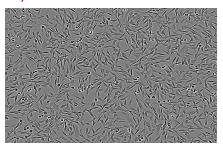
→ Cut on TOT 14-24 ns (511 keV) and 35-55 ns (1274 keV)

en.uj.edu.pl


Cardiac Myxoma – JPET vs PALS


- → Samples after extraction from patient were placed in sterile container with DMEM medium supplemented with 10% FBS, Penicillin/Streptomycin and HEPES buffer
- → Fresh sample measured within 4 hours after surgery
- \rightarrow Time of measurement ~70-80 min \rightarrow 1 mln counts

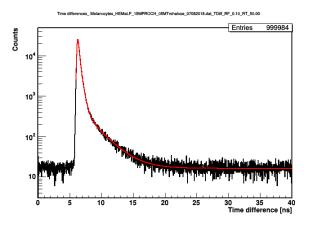




PALS – Cells culture in vitro

Human cell lines:

- 1) Melanocytes HEMa-LP from ThermoFisher
- 2) Melanoma WM115 from ATCC
- 3) Melanoma WM266 from ATCC
 - → Cells were cultured in M254/RPMI 1640 medium supplemented with 4.5g/L glucose, 2 mM L-glutamine and HGMS-2/10% fetal bovine serum, additionally Penicillin 100U/ml and Streptomycin 100 ug/ml was added to the culture.
 - → Medium was changed every 2 days.
 - → Culture was incubated at 37°C in 5% CO₂ humidified atmosphere rinse with PBS w/o Ca2+, Mg2+ and passage with 0.25% Trypsin every 3-4 days.
 - → Each samples contains cells from 8 T75 flasks, harvest upon 100% confluation and freeze dried (lyophilized).



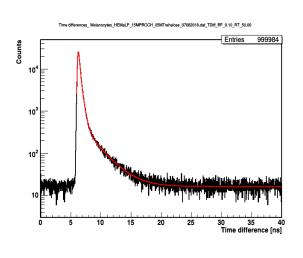
- 1) M254/RPMI 1640+ P/S+ 20% FBS + 10% DMSO
- 2) 10% DMSO + PBS w/o ²⁺Ca, ²⁺Mg
- 3) PBS w/o ²⁺Ca, ²⁺Mg
- 4) 1.5 M PROH(propylene glycol) + 0.5 M D-trehalose in PBS w/o ²⁺Ca, ²⁺Mg
- 5) 0.25 M D-trehalose in PBS w/o ²⁺Ca, ²⁺Mg

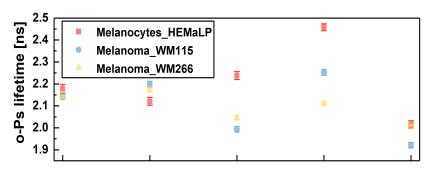
PALS – Cells culture in vitro

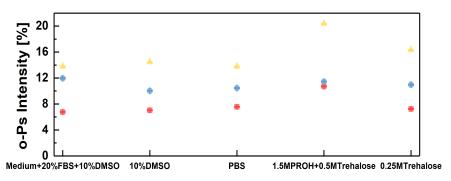
Human cell lines:

- 1) Melanocytes HEMa-LP from ThermoFisher
- 2) Melanoma WM115 from ATCC
- 3) Melanoma WM266 from ATCC

5


- 1) M254/RPMI 1640+ P/S+ 20% FBS + 10% DMSO
- 2) 10% DMSO + PBS w/o ²⁺Ca, ²⁺Mg
- 3) PBS w/o ²⁺Ca, ²⁺Mg
- 4) 1.5 M PROH(propylene glycol) + 0.5 M D-trehalose in PBS w/o ²⁺Ca, ²⁺Mg
- 5) 0.25 M D-trehalose in PBS w/o ²⁺Ca, ²⁺Mg

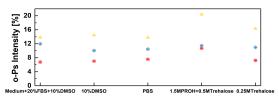



PALS – Cells culture in vitro

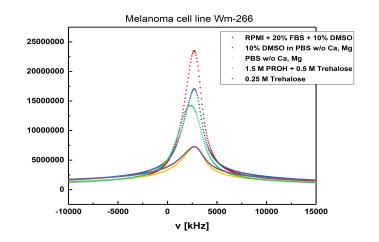
Human cell lines:

- 1) Melanocytes HEMa-LP from ThermoFisher
- 2) Melanoma WM115 from ATCC
- 3) Melanoma WM266 from ATCC

- 1) M254/RPMI 1640+ P/S+ 20% FBS + 10% DMSO
- 2) 10% DMSO + PBS w/o ²⁺Ca, ²⁺Mg
- 3) PBS w/o ²⁺Ca, ²⁺Mg
- 4) 1.5 M PROH(propylene glycol) + 0.5 M D-trehalose in PBS w/o ²⁺Ca, ²⁺Mg
- 5) 0.25 M D-trehalose in PBS w/o ²⁺Ca, ²⁺Mg



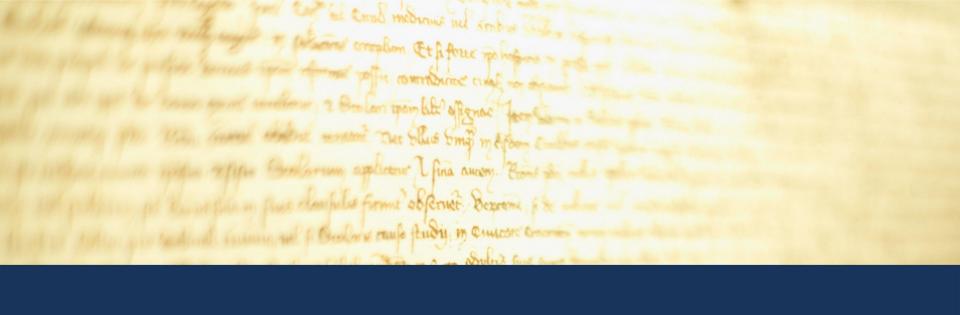
PALS – Cells culture in vitro

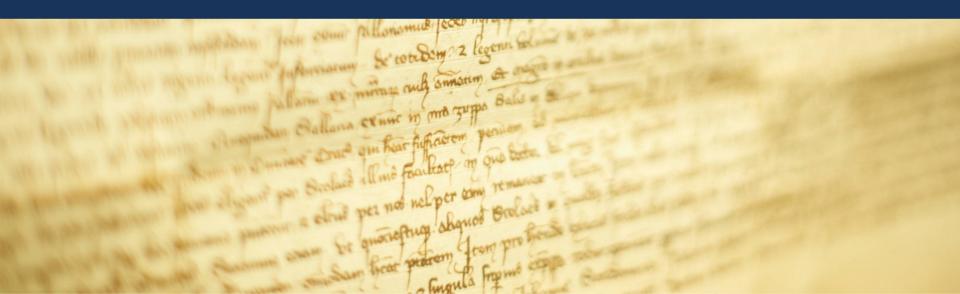

Human cell lines:

- 1) Melanocytes HEMa-LP from ThermoFisher
- 2) Melanoma WM115 from ATCC
- 3) Melanoma WM266 from ATCC

ls]	2.5	•	Melanocytes_HEMaLP			
ime [2.3	• ^	Melanoma_WM115 Melanoma_WM266			
s lifet	2.3 2.2 2.1 2.0		Ī	±	*	
9- 9-	1.9					
	Ī			•	•	

	Viability [%]	% of water	Remaining mass [%]
1	43.8	44	-
2	40.5	31	14.69%
3	5.4	22	14.24%
4	49.7	49	46.25%
5	10.7	16	24.62%


- 1) M254/RPMI 1640+ P/S+ 20% FBS + 10% DMSO
- 2) 10% DMSO + PBS w/o ²⁺Ca, ²⁺Mg
 - 3) PBS w/o ²⁺Ca, ²⁺Mg
 - 4) 1.5 M PROH(propylene glycol) + 0.5 M D-trehalose
- in PBS w/o ²⁺Ca, ²⁺Mg
- 5) 0.25 M D-trehalose in PBS w/o ²⁺Ca, ²⁺Mg



Summary and future plan

- → PALS is applicable to study biological structures
- → Preliminary results shown that PALS parameters differ for normal and cancer cells and tissue
- → First studies of human tissue on JPET scanner proves that o-Ps lifetime can be used as additional diagnostic parameter
- → Development of the method for sample preparation in order to study alive cell cultures
- → Studies with alive cell cultures and tissues comparing normal vs cancer
- → Primary cell culture derived from cardiac myxoma tumor
- → Checking for possible o-Ps formation model in living cells

Thank you for your attention

