

Search for η-mesic nuclei with (π, N) reaction at J-PARC

Hiroyuki FUJIOKA (Kyoto University, Japan) <u>fujioka@scphys.kyoto-u.ac.jp</u>

International Symposium on Mesic Nuclei 16 June 2010

n mesic nuclei @ J-PARC

LETTER OF INTENT FOR J-PARC

Spectroscopy of η mesic nuclei by (π^{-}, n) reaction at recoilless KINEMATICS

Letter of Intent for J-PARC 50GeV K. PaSchi (2007, 5) Hirenzaki^e, D. Jido^d, and H. Nagahiro^e. ^a RIKEN Nishina Center, RIKEN, 351-0198 Saitama, Japan K. Itahashi, H. Fujioka, ^b Department of Physics, The University of Tokyo, 113-0033 Tokyo, Japan ^c Department of Physics, Nara Women's University, 630-8506 Nara, Japan S. Hirenzaki, D. Jido, and H. Naga Jaka Center for Nuclear Physics (RCNP), Osaka University, 567-0047 http://j-parc/NuclPart/Proposal e.httml

2

Abstract

Theoretical work: H. Nagahiro, D. Jido, and S. Hirenzaki PRC 80, 025205 (2009)

We are interested in the recoilless production and spectroscopy of η mesic nuclei by using the (π^-, n) reaction. The K1.8BR beamline of the J-PARC will offer unique opportunity for the experiment. The goal of the present experiment is to understand the nature of the η meson in the nuclear medium, which is expected to couple to the $N^{*}(1535)$ -nucleon hole, and to step forward to the chiral symmetry of

1 Introduction

We consider recoilless production and spectroscopy of η mesic nuclei by using the (π^-, n) reaction. The target candidates at present are ⁷Li and ¹²C. The experiment comprises an entrance channel spectroscopy by the missing

see also: H. Fujioka, K. Itahashi, arXiv:1002.0201 [hucl-ex] (HYP09 proceedings)

¹E-mail: itahashi@riken.jp ²E-mail: fujioka@post.kek.jp

Why (π, N) reaction again?

- R. Chrien *et al.*, Phys. Rev. Lett. **60**, 2595 (1988)
 - \Box (π^+ , p) reaction on Li, C, O, Al targets
 - □ scattering angle = $15^{\circ} \rightarrow finite$ recoil momentum
 - only inclusive measurement

BNL experiment

calculation by Liu and Haider [PRC **34**, 1845(1986)]

BNL experiment

calculation by Liu and Haider [PRC **34**, 1845(1986)]

BNL experiment

Peak(s) might be masked by large quasi-free components.

calculation by Liu and Haider [PRC **34**, 1845(1986)]

Nagahiro et al., PRC 80, 025205 (2009)]

Nagahiro et al., PRC 80, 025205 (2009)]

Nagahiro et al., PRC 80, 025205 (2009)]

chiral unitary model v.s. chiral doublet model

New experiment at J-PARC

- High statistics : ~10⁶Hz π beam
- ☐ Recoilless condition ← zero-degree spectrometer
- exclusive measurement : tagging of decay products
 - □ N*(1535)→Nπ, N*(1535)N→NN

J-PARC Japan Proton Accelerator Research Complex

inter experiments

GeV333µA

~500m

100Me

Hadron, Hall

MLSF

CRCS

50GeV-PS $15\mu A, 750kW$ Bird's eye photo in July 2009

V to

SK

Hadron Experimental Hall

----First Beam: Hadron Experimental Hall January 27th, 2009 Photo was taken in Oct. 2008

Building: completed in

July-2007

setup for E15 experiment @ K1.8BR beamline

J-PARC E15 experiment

Search for K⁻pp bound state
 (see talk by T. Hiraiwa @ MESON2010)

missing-mass spectroscopy: ³He(K⁻, n)X

invariant-mass spectroscopy: $K^{-}pp \rightarrow \Lambda + p \rightarrow p + p + \pi^{-}$

Analogy between E15 and eta nuclei exp. @J-PARC

- Search for K⁻pp bound state → Search for eta mesic nuclei (see talk by T. Hiraiwa @ MESON2010)
 - missing-mass spectroscopy: ³He(K⁻, n)X
 → missing-mass spectroscopy: Li, C(π⁻, n) or (π⁺, p)
 - invariant-mass spectroscopy: $K^{-}pp \rightarrow \Lambda + p \rightarrow p + p + \pi^{-}$
 - → tagging of decay particles: $\eta N \rightarrow N^*(1535) \rightarrow \pi N$, $N^*N \rightarrow NN$

simulation: missing-mass spectra

15

inclusive ⁷Li(π^{-} , n) reaction

constant B.G., comparable with that obtained at BNL

 $MM: 20MeV/c^2 (FWHM)$

Exclusive measurement will improve S/N ratio!

from BNL to J-PARC

however, there are much more to be considered...

however, there are much more to be considered...

however, there are much more to be considered...

Pilot experiment : $d(\pi^+, p)p^*$

 \square N*(1535) ~ strongly couples with ηN

- □ [η-exchange] : N(1535) production : N(1535) → η+N, π +N, ...
 - [non- η -exchange] : rescattering of meson+N $\rightarrow \pi$ +N, η +N, ...

measurement of π +d \rightarrow pp η , pp π^0 reactions and estimation of N(1535) production cross section

double-scattering process

 \Box cf. K⁻+d \rightarrow A^{*}(1405)+n, A^{*} \rightarrow \Sigma+ π (J-PARC E31 experiment)

low-energy $\eta N \rightarrow \eta N$ interaction might be investigated.

double-scattering process

 \Box cf. K⁻+d \rightarrow A^{*}(1405)+n, A^{*} \rightarrow \Sigma+ π (J-PARC E31 experiment)

low-energy $\eta N \rightarrow \eta N$ interaction might be investigated.

double-scattering process

 \Box cf. K⁻+d \rightarrow A^{*}(1405)+n, A^{*} \rightarrow \Sigma+ π (J-PARC E31 experiment)

low-energy $\eta N \rightarrow \eta N$ interaction might be investigated.

experimental setup (idea)

a forward proton (N* production) and a sideward proton (N* decay) to be detected. $\rightarrow \pi^0$ and η are identified by the missing-mass d(π^+ , pp)X

target : deuterium gas (<1MPa), in order to detect as slow protons as possible.

Summary -1-

Search for η-mesic nuclei by use of the (π, N) reaction
 GOOD: recoilless condition, exclusive measurement
 BAD: huge background, even after Nπ coincidence ?
 Pilot experiment with deuterium gas target : d(π⁺, p)
 N(1535) production v.s. background contribution
 final state ppη (signal) v.s. ppπ⁰ (signal+background)

Summary -2-

- \Box d(π⁺, p)p*(1535)
- ³He(π , N) η NN : unbound?

 \square ⁴He(π, N)ηNNN : can ³Heη be bound?

 \square ^{6/7}Li(π , N) : smaller (0p_{3/2})_N⁻¹(0p)_{η} contribution that for ¹²C

What should we do?

 $^{12}C(\pi, N)$: $(0s_{1/2})_{N^{-1}}(0s)_{\eta}$ and $(0p_{3/2})_{N^{-1}}(0p)_{\eta}$ states overlaps!

Inputs from η-mesic nuclei community (both experimentally and theoretically) are very welcome!!