

Measurements on the ³He+η system at ANKE

International Symposium on Mesic Nuclei

June 16th, 2010

wissen leben WWU Münster

Why $\eta\text{-Meson}$ Production Close to Threshold?

• Do bound meson-nucleus systems exist?

- Investigation of symmetries and conservation laws
- Determination of "techincal data" of elementary particles
 - Mass, life time, ...

wissen.leben WWU Münste

The COSY-Accelerator at Jülich

COSY (Cooler Synchrotron)

Energy range

- 0.045 2.8 GeV (p)
- 0.023 2.3 GeV (d) (momentum 3.7 GeV/c)

Beam cooling

- Electron cooling
- Stochastic cooling

Polarisation

• p, d beams & targets

Beams

• internal, external

Experiments, Detectors

• ANKE, TOF, WASA, ...

The ANKE-Facility

Identification of ³He Nuclei at ANKE

"Momentum rabbit"

- Energies and momenta of the incoming particles (d,p) known
 - Deuteron (mass = m_d): energy + momentum: Adjustable by the accelerator
 - Proton (mass = m_p): target particle at rest, momentum = 0
- Energy of the ³He nucleus measurable by detectors
- η-meson: Not directly detectable at ANKE
 - → Identification of the reaction via the missing mass analysis

Missing-mass analysis: Use four-momenta $P=(E,p_x,p_y,p_z)$

m_x: Invariant mass of the not detected system (one of more particles)

Missing-mass analysis: Use four-momenta $P=(E,p_x,p_y,p_z)$

Two-Particle Final State: Phase Space

Assumption:

- Two-particle reaction a+b → c+d without initial and final state interactions ("ISI" and "FSI"):
- Scattering (and production) amplitude f = const.
 - → Increase of the cross section according to phase space expectations

$$\frac{d\sigma(\vartheta)}{d\Omega} = \frac{p_f}{p_i} |f_s|^2 \propto p_f \propto \sqrt{Q}$$

- p_i / p_f : Momenta of in- and outgoing particles in the CMS
- Q: Q-value = Sum of kinetic energies im CMS

Results for the Reaction $d+p \rightarrow {}^{3}He+\eta$

Alfons Khoukaz

wissen.leben WWU Münster

The Reaction d+p \rightarrow ³He+ η

- Extreme increase of the total cross section close to the production threshold
- Increase of the cross sections within $\Delta Q < 1 \text{ MeV}$
 - \rightarrow strong energy dependence at threshold
- After that total cross sections remain almost constant
 - \rightarrow Additional effect beside pure phase space

 $\frac{\text{Explanation:}}{^{3}\text{He nucleus and }\eta\text{-meson}}$

Scattering Theory and Final State Interaction

Description of the cross section including FSI:

$$\frac{d\sigma(\vartheta)}{d\Omega} = \frac{p_f}{p_i} |f_s|^2 = \frac{p_f}{p_i} \cdot \frac{|f_{\text{prod}}|^2}{\left|1 - i \cdot a \cdot p_f + \frac{1}{2}a \cdot r_0 \cdot p_f^2\right|^2}$$

Assumption:

- Energy dependence of the production amplitude f_{Prod} is negligible close to threshold: $f_{Prod} \sim \text{const.}$
- Initial State Interaction (ISI) also:

ISI = const.

Westfälische Wilhelms-Universität Münster

Scattering Theory and Final State Interaction

- The scattering length can deliver informationen about possible bound states
- Conditions for bound η^3 He state:
 - Existence of a pole in the complex p_f plane

$$f_s = \frac{f_{\text{prod}}}{1 - i \cdot a \cdot p_f + \frac{1}{2} a \cdot r \cdot p_f^2} \qquad a \equiv a_r + ia$$

$$r \equiv r_r + ir_i$$

· As well as

$$a_r < 0, \qquad a_i > 0, \qquad R = \frac{|a_i|}{|a_r|} < 1$$

wissen.leben WWU Münste

WWU Münster

Westfälische Wilhelms-Universität Münster

The Reaction d+p \rightarrow $^{3}\text{He+}\eta$

Fit to data very close to threshold: Only s-wave

500 Data: ANKE Collaboration 450 400 σ [nb] 350 300 total cross section 250 200 $f_{\rm prod}$ 150 $d\sigma(\vartheta) p_f$ $d\Omega$ 100 p_i $i \cdot a \cdot p_f + \frac{1}{2}a \cdot r_0 \cdot p_f$ 50 0 2 3 -1 0 4 excess energy Q [MeV]

Fit parameter:

- Complex scattering length a=a_r+ia_i
- Complex effective range r=r_r+ir_i
- Finite momentum width δp_{beam} of the accelerator beam

The Reaction d+p \rightarrow $^{3}\text{He+}\eta$

Excitation function without accelerator beam smearing δp_{beam} :

Blue line:

 Defolded shape, extracted from data (no accelerator beam smearing)

 \rightarrow

 Total cross section reaches maximum already ∆Q<0.5 MeV above threshold WISSEN.IEDEN WWU Münster

Alfons Khoukaz

The d+p \rightarrow $^{3}\text{He+}\eta$ Scattering Amplitude

Extracted scattering amplitude (Q > 0 MeV)

- Scattering amplitude decreases rapidly with increasing final state momentum p_f
- Scattering amplitude almost constant at high energies
 - → strong FSI in η^{3} He system

Westfälische Wilhelms-Universität Münster

η –³He Scattering Length

Fit to data delivers information about the complex η –³He scattering length:

$$\left(\frac{d\sigma(\vartheta)}{d\Omega}\right) \cdot \frac{p_i}{p_f} = |f_{\text{scat}}|^2 = |f_{\text{prod}} \cdot FSI|^2 = |f_{\text{prod}}|^2 \cdot |FSI|^2$$
Result:

$$a = \left[\pm (10.7 \pm 0.8^{+0.1}_{-0.5}) + i(1.5 \pm 2.6^{+1.0}_{-0.9})\right] \text{fm} \checkmark$$
FSI = $\frac{1}{1 - i \cdot a \cdot p_f + \frac{1}{2}a \cdot r_0 \cdot p_f^2}$
Notice: Determination of $|a_r|!$

The Reaction $d+p \rightarrow {}^{3}He+\eta$

Fit to the near-threshold ANKE data:

Westfälische Wilhelms-Universität Münster

Differential Cross Sections

Angular distributions of η -mesons at Q = 20 MeV:

 η –³He-Interaction: Determination of Pols

$$\left(\frac{d\sigma(\vartheta)}{d\Omega}\right) \cdot \frac{p_i}{p_f} = |f_{\text{scatt}}|^2 = |f_{\text{prod}} \cdot FSI|^2 = |f_{\text{prod}}|^2 \cdot |FSI|^2$$

$$FSI = \frac{1}{1 - i \cdot a \cdot p_f + \frac{1}{2}a \cdot r_0 \cdot p_f^2} \quad \longleftrightarrow \quad FSI = \frac{1}{\left(1 - \frac{p_f}{p_1}\right) \cdot \left(1 - \frac{p_f}{p_2}\right)}$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \rample \quad \ramp$$

Westfälische Wilhelms-Universität Münster

η –³He-Interaction: Determination of Pols

Pole close to the reaction threshold

$$|Q_0| = \left|\frac{p_1^2}{2 \cdot m_{red}}\right| = 0.37 \text{ MeV}$$

- Position of the near-threshold pole (and scattering length) stable, i.e. nearly independend of fit range
- Large real part of scattering length and |a_r|>a_i

Production Mechanism: Two-Step-Model

Use known cross sections for complete process

Westfälische Wilhelms-Universität Münster

Prediction of the Two-Step-Model

Angular distributions of η -mesons at Q = 20 MeV:

Further Evidences for a Strong FSI

Idea: Compare production amplitudes of different reactions with same final state

Compare: dp- and γ^3 He-Scattering

Westfälische Wilhelms-Universität Münster

So we have...

- Observation of an extremely large scattering length $a_{\text{He}\eta}$ $a = \left[\pm (10.7 \pm 0.8^{+0.1}_{-0.5}) + i(1.5 \pm 2.6^{+1.0}_{-0.9})\right] \text{fm}$
- Scattering amplitude has a pole very close to threshold $|Q_0| = \left| \frac{p_1^2}{2 \cdot m_{red}} \right| = 0.37 \text{ MeV}$
- Similar behaviour in case of photoproduction

The η–³He final state is a good candidate for a bound meson-nucleus system

Next Steps...

- Measurement of $d{+}p \rightarrow {}^{3}He{+}\eta$ with polarized beam and/or target
 - Informationen about contributing partial waves
 - Determination of the sign of the scattering length $a_{\mbox{\scriptsize Hen}}$
- Measurement of $d+n \rightarrow {}^{3}H+\eta$ (by $d+d \rightarrow {}^{3}H+\eta +p_{spec}$)
 - Informationen about isospin/charge invariance of the FSI
 - Determination of the scattering amplitude
- Measurement of $d+p \rightarrow {}^{3}He+\eta$ at fixed excess energies
 - Is the "GEM-Peak" real?
 - · How do the total and differential cross sections develop?

Investigations at Higher Excess Energies

vissen.leben WWU Münst

Investigations at Higher Excess Energies

vissen.leben WWU Münste

The ANKE and WASA Data Sets

• Consistent data set for further investigations

vissen.leben WWU Münste

Summary

- The η -³He system exposes an unexpected strong final state interaction
- The η -³He system is a good candidate for a bound meson-nucleus state (strong interaction)
- There is need for further theoretical studies
 - on the extraction of FSI parameters from data
 - on the description of the production process: Two-Step Model etc.
- New data coming soon might support further theoretical investigation

