Meson Properties at Finite Density from Mesic Atoms and Mesic Nuclei

Satoru Hirenzaki, Hideko Nagahiro

Nara Women's University,

Il International Symposium on Mesic Nuclei Jagiellonian University, Cracow, September 22 - 25, 2013

Meson mass spectrum and Symmetry Breaking Pattern (PS)

Interpreted as mass reduction of η' in the hot medium [Csorgo et al., PRL105(10)182301]]

	mesic atom (π, K,)	mesic nuclei ($\omega, \eta,$)
attraction : Re(V)	coulomb	strong int.
absorption : Im(V)	strong int.	strong int.
	overlap → small sharp peak	overlap → large broad peak or bump

 $\rightarrow \Gamma$ large absorption width is a *fate* of mesic-nuclei ?

special property of η' ?

experimental information [CBELSA/TAPS [M.Nanova et al., PLB710(12)600]]

4

 $\Gamma_{\eta'}(\rho_0; \langle |\vec{p}_{\eta'}| \rangle \sim 1 \text{GeV}/c) \sim 15 - 25 \text{ MeV}@\rho_0$

phenomenological estimation for $V_{n'}^{opt}$

<u>Optical potential</u> $V_{\eta'}$ [H.Nagahiro, S. Hirenzaki, E. Oset, A. Ramos, PLB709(12)87]

We consider only the **attractive** case & **energy-independent** potential.

$\operatorname{Re} V_{n'}$	and Im	Vn'N	with	various	α	values
		-1				

in unit of MeV

α	$ a_{\eta'N} $ fm	$V^{1st}_{\eta'}(ho_0)$	$V_{\eta'}^{2nd}(ho_0)$	$V_{\eta'}^{total}(ho_0)$
-0.193	0.1	-8.6 - 1.7i	-0.1 - 0.1i	-8.7 - 1.8i
-0.834	0.3	-26.3 - 2.1i	-0.6 - 0.9i	-26.8 - 3.0i
-1.79	0.5	-43.8 - 3.0i	-1.3 - 2.5i	-44.1 - 5.5i
-9.67	1.0	-87.7 - 6.9i	-4.1 - 10.4i	-91.8 - 17.2i

 $\operatorname{Re} V \gg \operatorname{Im} V$

phenomenological estimation for $V_{\eta'}^{opt}$ The reason why Re $V \gg Im V$ in the chiral unitary calculationKawarabayashi-Ohta, PTP66(81)1789Borasoy , PRD61(00)014011WT interaction for η' η_0 η_0

This interaction ...

- ✓ resembles that of the anomaly effect discussed by D. Jido PRC85(12)
- ✓ seems to **dominate** the $\eta'N$ interaction
- \checkmark contributes mostly to the η' elastic channel & barely to the inelastic channel

ongoing work [A. Hinata, H. Nagahiro et al.]

- ✓ energy-dependent singlet-baryon interaction, which is important when we discuss over <u>a wide energy range</u> (deep bound state $\leftrightarrow a_{\eta'N}$ at threshold)
- ✓ possible α value evaluated from, ex.) $\pi N \rightarrow \eta' N$ cross section

Formation by (p,d) reaction

target-nucleus dependence										
light nucleus ← less (shallow) η' bound states less hole-states ✓ simpler structure				 → heavy nucleus many (deeper) η' bound states many hole-states ✓ complex structure 						
	ź	η' bound	d states :	(V_0, W_0)	= -(10	0,10) M	eV case			
- [¹⁵ O			³⁹ Ca			
s, p				s, p, d			s, p, d, f, g			
spec		one neutron-hole state (excited states of daughter nucleus)								
/ed)	hole	ΔS_p	Г	hole	ΔS_p	Г	hole	ΔS_p	Г
ser		0p _{3/2}	_	—	0p _{1/2}	_	—	0d _{3/2}	—	—
do [0s _{1/2}	18	12	0p _{3/2}	6.3	0	1s _{1/2}	3.2	7.7
					0s _{1/2}	29	19	0d _{5/2}	8	3.7
								0p _{1/2}	25	21.6
								0p _{3/2}	25	21.6
								0s _{1/2}	48	30.5

decomposition into different final states

Experimental plan at GSI

• 1st Step : Inclusive measurement of (*p,d*) reaction with FRS at GSI

 η' -mesic nuclei formation spectra : ¹²C target : (π^+ ,p)reaction@JPARC

- p_π = 1.8 GeV/c
- proton angle = 0 deg.

 $\left(\frac{d\sigma}{d\Omega}\right)^{Lab.} = 100 \mu \mathrm{b/sr}$ case

By H. Nagahiro PTP Suppl. 186(2010)316.

Summary for $\eta'(958)$ -meson-nucleus bound system

Partial restoration of Chiral sym and $U_{A}(1)$ anomaly effect in the viewpoint of mesic-nuclei

(possible) large mass reduction without large absorption

$\text{ReV} \gg \text{ImV}$

special feature of $\eta' \checkmark$ attraction from contact interaction ✓ smaller inelastic channel

possibilities to observe bound state peaks

→ Experiment

•Scattering length vs. attractive potential → A. Hinata, H. Nagahiro

η -mesic nuclei: Introduction

works for η mesic nuclei & η -nucleus systems

- » appropriate kinematics
- » comparison with the (π^+,p) experiment at 1988

Chiral models for N*(1535) in medium

Chiral models for N*(1535) in medium

Klein-Gordon equation

$$[-\nabla^2 + m^2 + \Pi(\rho(r), \omega)]\phi = \omega^2 \phi$$

bound states

<u>Chiral doublet model (C=0.2)</u>

C.Garcia-Recio, T. Inoue, J. Nieves, E. Oset, PLB550(02)47, Table 1

(π^+ ,p) spectra : ¹²C target : Green function method

<u>T_π = 820 MeV (p_π = 950 MeV/c) : θ = 0 deg. (Lab)</u>

recoilless at η threshold

 $\frac{d^2\sigma}{dEd\Omega} [\mu \mathrm{b/srMeV}]$

- the past experiment of (π^+, p) [1988, Chrien et al.]
 - » the meaning of "negative result"
 - » comparison of our results with the experimental data
 - » appropriate experimental condition

Summary for eta-mesic nuclei

- Formation of η -mesic nuclei
 - » In-medium properties of N*(1535) resonance
 - > Chiral doublet model : deep bound state(s)
 - pocket-like potential, level crossing of η and N*-hole modes
 - > Chiral unitary model : shallow bound state(s)
- (π^+, p) reaction
 - » incident pion kinetic energy
 - > T_{π} = 820 MeV (p_{π} ~ 950 MeV/c) : recoilless at η threshold
- Reconsideration of the experimental data at 1988 by Chrien *at al.*
 - » Is the 15° proton angle appropriate?
 - > Not sensitive to the N* properties in-medium
 - » We should discuss the whole shape itself in the case that the imaginary part might be large
 - » the proton angle $\sim 0 \text{ deg.}$
- possible at J-PARC ?