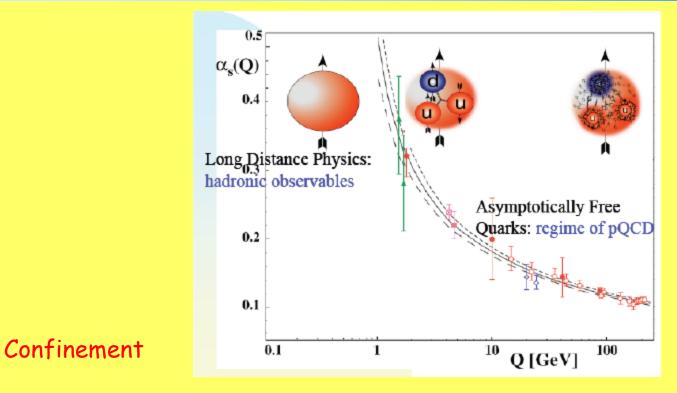

QCD Symmetries in eta and etaprime mesic nuclei

Steven Bass, SMI Vienna

Looking for evidence of gluonic degrees of freedom in low energy QCD: Confinement and dynamical (chiral) symmetry breaking $SU_{I}(3) \times SU_{R}(3) \times U_{A}(1)$ Expect nonet of pseudoscalar Goldstone bosons Pions and Kaons fit in this picture The masses of the eta and eta' are 300-400 MeV too big ! \rightarrow Famous axial U(1) problem of QCD Additional mass is associated with non-perturbative gluon dynamics Using nuclei to probe singlet degrees of freedom and QCD symmetries: \rightarrow How should the eta and eta-prime masses be modified in nuclei ? \rightarrow Possible bound states and eta(-prime) nucleon scattering lengths


Cracow, September 23 2013

Experiments: What to expect ?

Search for η -mesic nuclei with WASA-at-COSY

From Quarks to Hadrons

• Dynamical chiral symmetry breaking:

•

» Chiral condensate, pions, kaons, ... Goldstone bosons

- Axial U(1) Symmetry breaking ... Big masses for eta and etaprime
- Using nuclei to probe symmetries and possible restoration (both quark and gluonic effects)

Chiral symmetry

• QCD Lagrangian with massless quarks exhibits chiral symmetry

$$\mathcal{L}_{QCD} = \sum_{q} ar{q}_L \Big(i \hat{D} - g \hat{A} \Big) q_L + ar{q}_R \Big(i \hat{D} - g \hat{A} \Big) q_R - \sum_{q} m_q \Big(ar{q}_L q_R + ar{q}_R q_L \Big) - rac{1}{2} G_{\mu
u} G^{\mu
u}$$

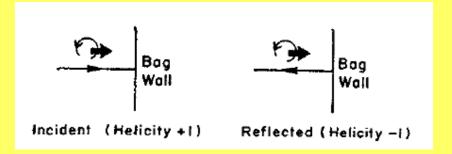
$$\left(\begin{array}{c} u_L \\ d_L \end{array}\right) \ \mapsto \ e^{i\frac{1}{2}\vec{\alpha}.\vec{\tau}\gamma_5} \left(\begin{array}{c} u_L \\ d_L \end{array}\right) \quad , \quad \left(\begin{array}{c} u_R \\ d_R \end{array}\right) \ \mapsto \ e^{i\frac{1}{2}\vec{\beta}.\vec{\tau}\gamma_5} \left(\begin{array}{c} u_R \\ d_R \end{array}\right)$$

• Noether currents

$$J^{(3)}_{\mu 5} = \left[ar{u} \gamma_{\mu} \gamma_{5} u - ar{d} \gamma_{\mu} \gamma_{5} d
ight] \qquad \qquad \partial^{\mu} J^{(3)}_{\mu 5} = 2m_{u} ar{u} i \gamma_{5} u - 2m_{d} ar{d} i \gamma_{5} d ar{d} i \gamma_$$

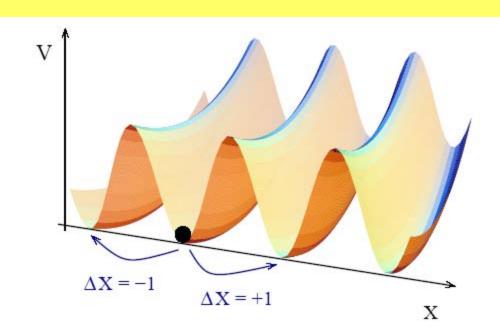
• No parity doublets in hadron spectrum \rightarrow Spontaneous Chiral symmetry breaking: non zero condensate $\langle vac | \bar{q}q | vac \rangle < 0$ spontaneously breaks the symmetry

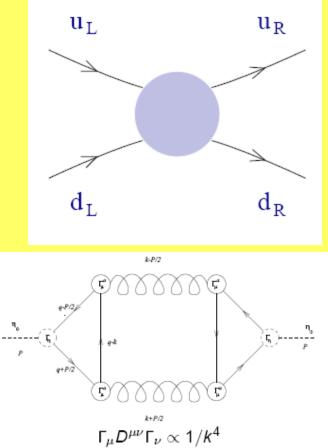
 \rightarrow Nonet of near massless Goldstone bosons with J^P = O⁻


• Identify with pion, kaon, eta with meson mass squared proportional to m_q

$$m_{\eta_8}^2 = rac{4}{3}m_{
m K}^2 - rac{1}{3}m_{\pi}^2$$

... where is the singlet boson?


Confinement and chiral symmetry


- Scalar confinement dynamically breaks chiral symmetry,
 - E.g. Bag model confinement
- Pions, kaons, eta ... as Goldstone bosons

Chirality and anomalous glue

- Perturbative QCD conserves chirality for massless quarks
- Confinement and vacuum tunneling processes (instantons, ...) connect left and right handed quarks

Eta and Etaprime masses

Mass matrix ٠

$$M_{\eta-\eta'}^2 = \begin{pmatrix} \frac{4}{3}m_{\rm K}^2 - \frac{1}{3}m_{\pi}^2 & -\frac{2}{3}\sqrt{2}(m_{\rm K}^2 - m_{\pi}^2) \\ \\ -\frac{2}{3}\sqrt{2}(m_{\rm K}^2 - m_{\pi}^2) & [\frac{2}{3}m_{\rm K}^2 + \frac{1}{3}m_{\pi}^2 + \tilde{m}_{\eta_0}^2] \end{pmatrix}$$

$$egin{array}{rcl} |\eta
angle &=& \cos heta \; |\eta_8
angle - \sin heta \; |\eta_0
angle \ |\eta'
angle &=& \sin heta \; |\eta_8
angle + \cos heta \; |\eta_0
angle \end{array}$$

Diagonalize ٠

$$m_{\eta',\eta}^2 = (m_{\rm K}^2 + \tilde{m}_{\eta_0}^2/2) \pm \frac{1}{2} \sqrt{(2m_{\rm K}^2 - 2m_{\pi}^2 - \frac{1}{3}\tilde{m}_{\eta_0}^2)^2 + \frac{8}{9}\tilde{m}_{\eta_0}^4}$$

Eigenvalues ٠

$$m_\eta^2 + m_{\eta'}^2 = 2m_K^2 + ilde{m}_{\eta_0}^2.$$

With no glue: ٠ chiral symmetry "predicts" eigenstates with masses 300 MeV "too small" $\left(\frac{1}{\sqrt{2}}|\bar{u}u+\bar{d}d\rangle\right)$ degenerate with the pion » "eta"

» "etaprime"
$$|ar{s}s
angle$$
 with mass $\sqrt{2m_K^2-m_\pi^2}$

Axial U(1) symmetry

• Extra gluonic mass term is associated with the QCD axial anomaly

$$J_{\mu5}=\left[ar{u}\gamma_{\mu}\gamma_{5}u+ar{d}\gamma_{\mu}\gamma_{5}d+ar{s}\gamma_{\mu}\gamma_{5}s
ight]$$

$$\partial^{\mu} J_{\mu 5} = \sum_{k=1}^{f} 2i \left[m_k \bar{q}_k \gamma_5 q_k \right] + N_f \left[\frac{\alpha_s}{4\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} \right]$$

- plus gluon topology (note the difference with "perturbative glue")
- *it Hooft, Veneziano, Witten, Crewther, ...*
 - possible connection to confinement (Kogut and Susskind)

Can we observe physical manifestation of this anomalous glue in low-energy physical processes involving eta and eta´ mesons ? → For review see SDB, Acta Phys Pol B Suppl 2 (2009) 11.

Glue in etaprime physics

- Glue enters through the anomaly equation ...
- Three important places it can contribute
 - » Gluonic potential associated with QCD vacuum gives the etaprime a big mass
 - » The etaprime has a large singlet component
 → coupling to gluonic intermediate states (OZI violation)
 - » Gluonic Fock components in the etaprime wavefunction

Eta(prime) bound states in nuclei

[SDB + AW Thomas, Phys Lett B634 (2006) 368]

- New experiments + big effort ...
- Binding energies and effective masses in nuclei are sensitive to
 - Coupling to scalar sigma field in the nuclei in mean field approx.
 - Nucleon-nucleon and nucleon-hole excitations in the medium
- TH: Solve for the meson self-energy in the medium

$$k^2-m^2={\rm Re}~\Pi(E,\vec{k},\rho)$$

$$\Pi(E,\vec{k},\rho)\bigg|_{\{\vec{k}=0\}} = -4\pi\rho\bigg(\frac{b}{1+b\langle\frac{1}{r}\rangle}\bigg). \qquad b = a(1+\frac{m}{M})$$

- Where a is the "eta(prime)-nucleon scattering length"

Eta bound-states in nuclei

Sigma mean field couples to light quarks and not to strange quarks
 → Flavour-singlet component is important !
 The bigger the eta-eta' mixing angle, the bigger the singlet

component in the eta

- \rightarrow greater the attraction
- \rightarrow more binding
- \rightarrow bigger eta-N scattering length

Likewise, more mixing gives smaller singlet component in the eta'

 \rightarrow reduced binding and smaller eta'N scattering length

QCD arguments

 \rightarrow gluonic mass term is suppressed in the medium

but TH technology to calculate the size of the effect direct from QCD still some time away

 \rightarrow look at QCD inspired models

QCD and models

- Include key aspects of QCD as input motivation
 - » Confinement
 - » Chiral symmetry
 - » Eta-etaprime mixing
- Quark-meson coupling, chiral coupled channels, NJL, linear sigma model... include different aspects of QCD input with very different predictions
- Suppose we see a bound state or mass shift ③
 - » What do we learn about QCD ?

U(1) extended chiral Lagrangian

Low energy effective Lagrangian

$$\mathcal{L}_{\mathrm{m}} = \frac{F_{\pi}^2}{4} \mathrm{Tr}(\partial^{\mu} U \partial_{\mu} U^{\dagger}) + \frac{F_{\pi}^2}{4} \mathrm{Tr}\Big[\chi_0 \left(U + U^{\dagger}\right)\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{3}{\tilde{m}_{\eta_0}^2 F_0^2} Q^2 + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log U^{\dagger}\Big] + \frac{1}{2} i Q \mathrm{Tr}\Big[\log U - \log$$

$$U = \exp\left(i\frac{\phi}{F_{\pi}} + i\sqrt{\frac{2}{3}}\frac{\eta_0}{F_0}\right)$$

• Q represents the topological charge density. The gluonic potential

$$\frac{1}{2}iQ \mathrm{Tr} \left[\log U - \log U^{\dagger} \right] + \frac{3}{\tilde{m}_{\eta_0}^2 F_0^2} Q^2 \quad \mapsto \quad -\frac{1}{2} \tilde{m}_{\eta_0}^2 \eta_0^2$$

yields the gluonic contribution to the etaprime mass term

• Couple to sigma mean field and repeat ...

$$\mathcal{L}_{\sigma} = \frac{F_{\pi}^2}{4} \text{Tr} M ~(U + U^{\dagger}) ~g_{\sigma}^M \sigma + Q^2 ~g_{\sigma}^Q \sigma$$

$$\tilde{m}_{\eta_0}^2 \mapsto \tilde{m}_{\eta_0}^{*2} = \tilde{m}_{\eta_0}^2 \frac{1+2x}{(1+x)^2} < \tilde{m}_{\eta_0}^2$$

where

$$x=\frac{1}{3}g^Q_\sigma\sigma\; \tilde{m}^2_{\eta_0}F_0^2.$$

QCD Inspired Models

- Quark Meson Coupling Model:
 - Can vary the mixing angle !
 - Use large eta and eta' masses to treat the eta and eta' as MIT Bags embedded in the medium with coupling between the light-quarks and the sigma mean field

Solve for in-medium mass and binding energy

- \rightarrow Extract an "effective" scattering length for the model
- \rightarrow Increases with increasing singlet component in the eta !

	m (MeV)	z	m^* (MeV)	Rea~(fm)
η_8	547.75	3.31	500.0	0.43
η (-10°)	547.75	3.15	474.7	0.64
η (-20°)	547.75	3.00	449.3	0.85
η_0	958	1.46	878.6	0.99
η' (-10°)	958	1.62	899.2	0.74
η' (-20°)	958	1.76	921.3	0.47

For etaprime $V_{
m real} \sim -48 \pm 11 \,\, MeV$

Eta-etaprime mixing and mass shift

- Phenomenological fits to EP data
 - » On-shell Re[a_eta] ~ 0.9 fm [Green + Wycech, Arndt et al]
 - » COSY-11 ~ 0.7 fm from FSI in pp → pp eta
 - » Re[a_eta´] < 0.8fm, prefer |a_eta´ |~ 0.1 fm
- Chiral coupled channels treating the eta as a pure octet state
 - » Small mass shift and small Re[a_eta] ~ 0.2 fm
 - » For etaprime: new Nagahiro et al., consider range of a_eta' |
- N*(1535)
 - 3 quark state (1s)2(1p) in Quark model and lattice calculations or
 - K-Sigma quasi-bound state from Chiral coupled channels in octet approx.
 - In data and in both QMC and chiral coupled channels models, negligible shift in excitation energy in nuclei

Bound states in finite nuclei

Table 1

 η, ω and η' bound state energies (in MeV), $E_j = Re(E_j^* - m_j) (j = \eta, \omega, \eta')$, where a widths for the η' are set to zero. The eigenenergies are given by, $E_j^* = E_j + m_j - i\Gamma_j/2$

33				$\gamma_\eta = 0.5$		$\gamma_{\omega}=0.2$		$\gamma_{\eta'} = 0$
ELSEVIER	Nuclear Physics A670 (2000) 198c-201c			E_η	Γ_η	E_ω	Γ_{ω}	$E_{\eta'}$
		⁶ _j He	1s	-10.7	14.5	-55.6	24.7	* (not calculated)
Study of ω -, η -, η' - and D^- -mesic nuclei		11 1	1s	-24.5	22.8	-80.8	28.8	*
		$_{j}^{26}Mg$	1s	-38.8	28.5	-99.7	31.1	*
K. Tsu	shima ^a *		1p	-17.8	23.1	-78.5	29.4	
			2s			-42.8	24.8	*
•	-10 degrees mixing angle	$_{j}^{16}O$	1s	-32.6	26.7	-93.4	30.6	-41.3
			1p	-7.72	18.3	-64.7	27.8	-22.8
•	Eta Binding energy	$_{j}^{40}$ Ca	1s	-46.0	31.7	-111	33.1	-51.8
			1p	-26.8	26.8	-90.8	31.0	-38.5
	-10.7 MeV in ⁶ He		2s	-4.61	17.7	-65.5	28.9	-21.9
	(14 15) Mal/ with 20 damaged	$_{j}^{90}$ Zr	1s	-52.9	33.2	-117	33.4	-56.0
	- (14-15) MeV with -20 degrees		1p	-40.0	30.5	-105	32.3	-47.7
		000	2s	-21.7	26.1	-86.4	30.7	-35.4
		208Pb	1s	-56.3	33.2	-118	33.1	-57.5
•	For etaprime in Carbon 12		1p	-48.3	31.8	-111	32.5	-52.6
			2s	-35.9	29.6	-100	31.7	-44.9
•	Binding energy							

- (22-37) MeV for mixing angles -20 and -10 degrees

Comparison with NJL

- NJL model using density dependent instanton interaction
 - QCD input: chiral symmetry, no confinement, medium a Fermi gas of quarks instead of nucleons, mass shift for the eta' up to ~ 150 MeV
 » Phys Rev C74 (2006) 045203

$$\mathcal{L} = \mathcal{L}_{0} + \mathcal{L}_{4} + \mathcal{L}_{6},$$

$$\mathcal{L}_{0} = \bar{\psi} (i\partial_{\mu}\gamma^{\mu} - \hat{m})\psi,$$

$$\mathcal{L}_{4} = \frac{g_{S}}{2} \sum_{a=0}^{8} [(\bar{\psi}\lambda^{a}\psi)^{2} + (\bar{\psi}\lambda^{a}i\gamma_{5}\psi)^{2}],$$

$$\mathcal{L}_{6} = g_{D} \{\det[\bar{\psi}_{i}(1 - \gamma_{5})\psi_{j}] + h.c.\}.$$
(a) $g_{D}(\rho) = g_{D}$
(b) $g_{D}(\rho) = g_{D} \exp[-(\rho/\rho_{0})^{2}],$
(c) $g_{D}(\rho) = g_{D} \exp[-(\rho/\rho_{0})^{2}],$

 Suppose eta-eta' mass splitting comes just from anomaly, proportional to quark condensate → 80-100 MeV mass shift

» Phys Rev C85 (2012) 032201, arXiv:1309.4845

Outlook and Conclusions

- Eta and etaprime physics probes the role of long range gluonic dynamics
- Etas and etaprimes in nuclei:
 - Aspects of Confinement, chiral symmetry and their interplay
 - Binding energies and scattering lengths sensitive to the flavoursinglet component in the eta
 - QMC model:
 - » Factor of 2 increase in the eta-nucleon scattering length and binding energy in nuclei with eta-etaprime mixing cf. Theory prediction with a pure octet eta
 - » N*(1535) as 3 quark state (1s)²(1p)

... Awaits experimental input!

.. ELSA, GSI (etaprime), COSY (eta).