Photoproduction of η -mesons off nuclei

- the search for η -mesic nuclei -

B. Krusche, U. Basel, CBELSA/TAPS, CBALL/TAPS collaborations

Introduction

Experimental setups

- Crystal Barrel & TAPS @ ELSA
- Crystal Ball & TAPS @ MAMI

Experimental results

- η -photoproduction elementary reactions
- coherent photoproduction of η -mesons: ${}^{3}\text{He}(\gamma,\eta){}^{3}\text{He},\,{}^{7}\text{Li}(\gamma,\eta){}^{7}\text{Li}$
- other entrance channels: photoproduction of $\eta \pi^{o}$ -pairs

Conclusions

B. Krusche, Cracow, September 2013

interaction of mesons in nuclear matter

results from inclusive (quasi-free) meson photoproduction
 A-scaling of cross sections as function of kinetic energy T:

 $\sigma(A) \propto A^{lpha(T)}$

lpha pprox 1: 'volume', no absorption lpha pprox 2/3: 'surface', strong absorption

- π^{o} -mesons: strongly absorbed at energies sufficient to excite Δ ; but only weak interaction at small momenta \longrightarrow no bound-states
- η-mesons: strong interaction at small momenta due to s-wave
 S₁₁(1535) state at threshold
 → strong enough for bound states?
- ω, η' -mesons: not much known yet, could be promising

the story of η -mesic nuclei

1985: Bhalerao & Liu:

attractive η -nucleus interaction for A \geq 12

- 1986: Liu & Haider: suggestion of η-nucleus bound states
- experiments: inconclusive e.g.: Chrien et al. (1988): $\pi^+ + {}^{16}O \rightarrow p + {}^{15}_{\eta}O$ Johnson et al. (1993): $\pi^+ + {}^{18}O \rightarrow \pi^- + {}^{18}_{\eta}Ne$
- 1993 2002: analysis of new
 η-production data from the proton:
 larger ηN-scattering lengths
- 1991 2002: T. Ueda, C. Wilkin, S.A. Rakityanski and others: suggestions of bound ²H-, ³H-, ³He-, ⁴He-η states

experiments:
 threshold behavior
 of η-production

$$p+d \rightarrow {}^{3}\text{He} + \eta \ \gamma + {}^{3}\text{He} \rightarrow {}^{3}\text{He} + \eta$$

Different entrance channels for photoproduction

- $\gamma + A \rightarrow \pi^{o} + A' + N + \dots$
- $rac{d\sigma}{d\Omega} \propto \Sigma |\mathcal{A}|^2 imes ...$

& nuclear effects & FSI & ...

- often dominant (exception low energy π^0)
- select 'magic momentum'
- complicated final states

• coherent • A, \vec{q} γ • π^o

 $\gamma + A \rightarrow \pi^o + A$

$$rac{d\sigma}{d\Omega} \propto |\Sigma \mathcal{A}|^2 imes F^2(q^2) imes ...$$

& nuclear effects & FSI & ...

- works only close to thresholds
- simple final states
- suppressed by nuclear FF
- spin/iso-spin filter

• incoherent

 $egin{aligned} & \gamma + A
ightarrow \pi^o + A^\star \ &
ightarrow \pi^o + A + \gamma \end{aligned}$

- similar to coherent
- different FF's
- different spin/iso-spin selection

η -photoproduction from ³He - threshold behavior

η -photoproduction off the proton: resonance contributions?

-3

branching ratios and elm. couplings (PDG):

	state	b_η [%]	$A^p_{1/2}$	$A^p_{3/2}$	$A_{1/2}^n$	$A^n_{3/2}$
•	D ₁₃ (1520):	0.23±0.04	-24	150	-59	-139
	S ₁₁ (1535):	42 ±10	90		-46	

- $S_{11}(1650)$: 5 15 53 -15 • $D_{15}(1675)$: 0+1 19 15 -43 -58
- $D_{15}(1675)$: 0 ± 1 19 15 -43 -58 • $F_{15}(1680)$: 0 ± 1 -15 133 29 -33
- D₁₃(1700): 0±1 -18 -2
- $P_{11}(1710)$: 10 30 24 -2
- P₁₃(1720): 4±1 -10 -19 4 -10
- dominent contribution from S₁₁ states, interference structure?
- D₁₅(1675) has stronger electromagnetic coupling to neutron than to proton
- complicated pattern around 1.7 GeV

E.[GeV]1.0 1.5 2.0 2.5 3.0 o[ub] MAID 1 $D_{13}(1520)$ $S_{11}(1535)$ --- MAID 2 10 SAID • • • BnGn 10 ວ[µb] 0 S₁₁(1650) 1.75 .5 W[GeV] D₁₅(1675) TAPS 95 GRAAL 02 GRAAL 07 CLAS 02 CLAS 09 Crystal Barrel 05 Crystal Barrel 09 Crystal Ball 10 LNS 06 1.8 2 2.2 2.4 2.6 1.6 1.4 W[GeV]

 $\gamma p \rightarrow \eta p$

PWA's agree excellently with data in S $_{11}$ range, less so at higher energies

0+5

angular distributions for $\gamma p ightarrow p\eta$

typical angular distributions

• fitted coefficients

• fitted with:

 $rac{d\sigma}{d\Omega} = \sum A_i P_i(\cos(\Theta^{\star}))$

- typical s-wave behavior at threshold
- fast variation interesting structures around $W \approx$ 1.7 GeV
- diffractive (t-channel) at highest energies

quasifree $\gamma'n' \rightarrow n\eta$: more surprises

(I. Jaegle et al., D. Werthmüller et al., L. Witthauer et al.)

pronounced, narrow structure in neutron excitation function close at W=1.68 GeV

- width of structure pprox 30 MeV
- neutron/proton ratios in agreement for all measurements:
 - in S₁₁(1535) region 2/3 ratio
 - peak close to 1.7 GeV
 - very close to threshold almost unity, no distinction between participant and spectator
- free and deuteron quasifree proton data agree; quasifree ³He data suppressed by \approx 25%

$\gamma n ightarrow n\eta$ - excitations functions for different angular bins

(D. Werthmüller and L. Witthauer et al., submitted to PRL)

deuteron target

• ³He target

B. Krusche, Cracow, September 2013

coherent η -photoproduction: search for light - η -mesic nuclei

• η -photoproduction dominated by excitation of S₁₁(1535):

$$\gamma$$
(E1) + N $ightarrow$ S $_{11}$ $ightarrow$ N + η

 J_z : -1 +1/2 -1/2 -1/2 0 \rightarrow spin-flip transition

- isospin structure: $A_{1/2}^{IS}/A_{1/2}^{p} \approx$ 0.09 \rightarrow dominantly isovector
- expectation for light nuclei:
 - 1) ²H: J=1, I=0, isoscalar, spin-flip \rightarrow small signal (seen, almost in agreement with expectations)
 - 2) ⁴He: J=0, I=0, isoscalar, non spin-flip \rightarrow negligible (not seen, only upper bounds, V. Hejny et al.)
 - 3) ³He: J=1/2, I=1/2; ⁷Li: J=3/2, I=1/2,

isovector, spin-flip contributions

 \rightarrow good candidates

MAMI accelerator in Mainz

4. Stage: Harmonic Double Sided Microtron maximum energy: 1.5 GeV

Experiments: Crystal Ball & Crystal Barrel with TAPS

Bonn ELSA accelerator: Crystal Barrel (CsI), TAPS (BaF₂) forward wall, inner detectors $E_{\gamma} \leq 3.5$ GeV, lin. pol.: available,

circ. pol.: available

Mainz MAMI accelerator: Crystal Ball (NaJ), TAPS (BaF₂) forward wall, inner detectors $E_{\gamma} \leq 1.5$ GeV, lin. pol.: available, circ. pol.: available

TAPS Crystal Ball - at MAMI

Experiments at MAMI

• γ^{3} He $\rightarrow \eta^{3}$ He liquid ³He target (0.073 nuclei/barn), $E_{\gamma} =$ 0.45 GeV - 1.4 GeV

F. Pheron et. al., Phys. Lett. B 709 (2012) 21

• $\gamma^7 \text{Li} \rightarrow \eta^7 \text{Li}$ solid ⁷Li target (0.264 nuclei/barn), $E_\gamma =$ 0.14 GeV - 0.81 GeV

Y. Maghrbi et. al., Eur. Phys. J. A 49 (2013) 38

analysis:

identification of η -mesons from 2γ and 6γ decays with invariant mass analysis, identification of coherent kinematics with missing energy analysis

 invariant mass spectra for ⁷Li target

reaction identification - missing energy analysis

separation of breakup and coherent reaction:

- no additional hit in detector
- overdetermined kinematics compare η kinetic cm-energy from incident photon energy to measured η -energy; MC simulations for
- signal shapes
 background from breakup reactions rises fast with incident photon energy

results: threshold behavior of coherent reaction

- good agreement between 2γ and 6γ results
- ³He cross section in magnitude one order of magnitude larger than ⁷Li
- much steeper rise of ³He cross section at threshold

plane wave impulse approximation for coherent reaction

- elementary amplitude: E_{0+} spin-flip
- nuclear structure: for ³He dominant from unpaired $1s_{1/2}$ neutron; for ⁷Li from unpaired $1p_{3/2}$ proton and from $1p_{3/2} \rightarrow 1p_{1/2}$ excitation.
- nuclear (mass) form factors: (charge FF corrected for proton radius)

cross section approximation:

$$rac{d\sigma_{\eta A}}{d\Omega} = egin{pmatrix} q_{\eta}^{(A)} k_{\gamma}^{(N)} \ k_{\gamma}^{(A)} q_{\eta}^{(N)} \end{pmatrix} rac{d\sigma_{ ext{elem}}}{d\Omega} ig(F_{C*}^2(q^2) + F_{Cx*}^2(q^2)ig)$$

total cross sections compared to PWIA

- most simple PWIA approximation agrees overall within factors of \approx 2
- much steeper rise of cross section at threshold for ³He, large enhancement with respect to PWIA

angular distributions

search for η -mesic nuclei in other reaction channels

- G. Sokol et al., search in: $\gamma + ^{12}C o N +_\eta (A-1) o N + \pi^+ + n + (A-2)$
- similar principle for photoproduction from ³He:

ightarrow search for back-to-back π^o - p pairs

excess of π^o-p
 back-to-back
 emission at the
 η-threshold
 seen in previous
 experiment

but: complicated
structures from
nucleon resonance
excitations obscure
all possible signals

Conclusions

Coherent photoproduction of η **-mesons:**

- 'coherent' photoproduction identified for ³He and ⁷Li
- total cross section one order of magnitude larger for ³He than for ⁷Li;
 for both reactions absolute magnitude roughly in agreement with expectations from PWIA modelling
- strong threshold enhancement for $\gamma + {}^3$ He $o \eta + {}^3$ He similar like in hadron induced reactions o final state property
- fast variation of shape of angular distributions at threshold; different from PWIA expectation
- for ⁷Li threshold behavior (absolute magnitude and shape of angular distributions) similar to PWIA expections. No indication for unusual FSI effects

$\pi^{o} - p$ back-to-back pairs:

• possible signal obscured by background from quasi-free single π^o -production through nucleon resonances

what about η -mesic ⁴He?

- η -photoproduction dominated by excitation of S₁₁(1535): γ (E1) + N \rightarrow S₁₁ \rightarrow N + η J_z: -1 +1/2 -1/2 -1/2 0 \Rightarrow spin-flip transition
- isospin structure: $A_{1/2}^{IS}/A_{1/2}^{p} \approx 0.09 \Rightarrow$ dominantly isovector
- \Rightarrow coherent η -photoproduction ruled out for I=J=0 nuclei

• possible way out: coherent photoproduction of $\eta\pi^{o}$ -pairs

dominant process close to threshold: $\gamma p \rightarrow D_{33}$ (1700) $\rightarrow \eta P_{33}$ (1232) $\rightarrow \eta \pi^o p$

I. Horn et al., PRL 101, EPJA 38 (2008) V. Kashevarov et al., EPJA (2009)

⇒no spin-flip,
identical amplitude for p, n
⇒ideal entrance channel

$d(\gamma, \eta \pi^{O})d$: total cross section, kinetic energy distributions

total cross section in reasonable agreement with predictions

• T distributions support dominant $\Delta^{\star} \to \Delta(1232)\eta \to N\eta\pi^{o}$ contribution: $T(\pi^{o})$ peaks around 100 MeV ($\Delta(1232) \to N\pi$), $T(\eta)$ rises with E_{γ}

ELSA

isospin decomposition of $\pi\eta$ -photoproduction

- neutron/proton cross section ratios for neutral and charged pions unity
- charged/neutral pion ratios for same nucleon close to 1/2
- quasi-free off deuteron suppressed by \approx 25% compared to free nucleon

isospin decomposition of $\pi\eta$ -photoproduction

cross section ratios

- cross section ratios agree with $\gamma N o \Delta^{\star} o \eta \Delta o \eta \pi N$ reaction chain
- only alternative would be: $\gamma N o \Delta^{\star} o \pi N^{\star} o \pi \eta N$
- \implies analyze invariant mass distributions

invariant mass distributions for $\pi\eta$ -photoproduction

- shape of invariant mass distributions for all isospin channels practically identical
- clear signal for $\Delta(1232) \rightarrow N\pi$ -decay

Outlook

Solution Solution Solution

- ³He so far best candidate for η -mesic state, very suggestive but no 'smoking gun'
- no other nuclei promising targets due to selection rules

quasi-free production (magic momentum transfers)

perhaps alternative for medium heavy nuclei, so far basically not explored

Solution of $\eta\pi^0$ -pairs

seems to be most promising approach to search for ⁴He_η;
 experiment proposal accepted, challenging due to small cross sections,
 but much recent progress in achievable data rates for CB/TAPS at MAMI