

Search for the manifestation of η -mesic nuclei on the $dd \rightarrow {}^{3}He + N + \pi$ excitation function measured with WASA-at-COSY

Wojciech Krzemień, Paweł Moskal, Magdalena Skurzok

for the WASA-at-COSY collaboration

The II International Symposium on Mesic Nuclei September 22nd-25th 2013, Jagiellonian Univeristy, Kraków

Outline

- Short motivation of the research
- Idea of measurement
- Results from 2008 experiment
- Preliminary results from 2010 experiment
- Summary and outlook

Why η-mesic nuclei

- New bound state of hadrons
- Investigation η -N interactions
- Studies of η quark structure

Binding energy and effective mass of η are sensitive to the gluon component of the flavour singlet function $|\eta_0>$

(more gluon content \rightarrow more attractive binding \rightarrow higher binding energy)

(S.D. Bass, A.W. Thomas, Phys. Lett. B634 (2008))

• Study of in-medium properties of N*(1535) resonance:

N- η system is strongly coupled with N*(1535) resonances. Eta-mesic nucleus as

a probe for testing different N* models

(Garcia-Recio, Nieves, Inoue, Oset, PLB550(02)47 Inoue, Oset, NPA710(02) 354 Jido, Oka, Hosaka, Nemoto, PTP106(01)873 Jido, Hatsuda, Kunirhiro, NPA671(00)471)

Experimental indications of the existence \Box of a bound state in the η -He system

Also total x-section $pd \rightarrow {}^{3}He\eta$ and $dd \rightarrow {}^{4}He\eta$ SPES-3 and SPES-4 @SATURNE N. Willis et al. Phys.Lett. B406(1997). $dp \rightarrow {}^{3}He\eta$

Full circles: COSY-ANKE

(T.Mersmann et al., Phys. Rev. Lett. 98 242301-1-4 (2007))

Empty circles: COSY-11

(J.Smyrski et al., Phys. Lett B 649 258-262 (2007))

Also total x-section γ^3 He $\rightarrow \eta^3$ He Crystal Ball-TAPS@MAMI F. Pheron et al. Phys.Lett. B709 (2012).

Experimental indications of the existence \bigcirc \square of a bound state in the η -4He system

- R. Frascaria et al., Phys. Rev. C 50 (1994) 573.
- N. Willis et al., Phys. Lett. B 406 (1997) 14.
- A. Wrońska et al., Eur.Phys.J. A26 (2005) 421-428.

Idea of measurement

- relative $N-\pi$ angle in the CM : $\theta_{cm} \sim 180^{\circ}$
- low ³He momentum in the CM

Signatures of the bound state

Search for a resonance-like structure

with maximum below the η -4He production threshold

Experiments

June 2008

Channels: dd \rightarrow ³He $p \pi^{-1}$ Normalization: dd \rightarrow ³He n

Q: -51 to 22 MeV

P: 2.185 to 2.4 GeV/c

November-December 2010

Channels: dd \rightarrow ³He $p \pi^{-}$ dd \rightarrow ³He $n \pi^{0} \rightarrow$ ³He $n \gamma\gamma$ Normalization: dd \rightarrow ³He n

Q: -70 to 30 MeV P: 2.127 to 2.422 GeV/c

Experiments

June 2008

Channels: dd \rightarrow ³He $p \pi^{-}$ **Normalization:** dd \rightarrow ³He *n*

Q: -51 to 22 MeV

P: 2.185 to 2.4 GeV/c

Ρ

Ρ

min

max

November-December 2010

Channels: dd \rightarrow ³He $p \pi$ ⁻ dd \rightarrow ³He $n \pi^0 \rightarrow$ ³He $n \gamma\gamma$ **Normalization:** dd \rightarrow ³He *n*

Q: -70 to 30 MeV P: 2.127 to 2.422 GeV/c ~20 x more statistics P_{beam}[GeV/c] Q [MeV] ramped beam Q_{max} Q min time

WASA-at-COSY

WASA-at-COSY

³He ions identification in Forward Detector

Pion identification in the Central Detector

dd \rightarrow ³He $p \pi^{-}$

 π^{-} identification

dd \rightarrow ³He $n \pi^0 \rightarrow$ ³He $n \gamma\gamma$

 π^o identification

Nucleon identification (missing mass method)

dd \rightarrow ³He $p \pi$ ⁻

dd \rightarrow ³He *n* $\pi^0 \rightarrow$ ³He *n* $\gamma\gamma$

Results from 2008 data

Excitation function (normalized and corrected for efficiency)

Upper limit of the maximum cross-section

for the reaction dd \rightarrow (⁴He - η)_{bound} \rightarrow ³He p π^{-}

Preliminary results from 2010 data

Kinematical conditions (3% of the full data sample)

Excitation functions for the "signal-rich" region

dd \rightarrow ³He *n* π^{0} (full data sample)

red line: dd \rightarrow ³He *n* π^{0} blue line: dd \rightarrow ³He *p* π^{-} black line(MC): dd \rightarrow (⁴He - η)_{bound} \rightarrow ³He n π^{0}

dd → ³He *p* π⁻ (3% of data)

Excitation functions for the "signal-rich" region

red line: dd $\rightarrow {}^{3}$ He $n \pi^{0}$ blue line: dd $\rightarrow {}^{3}$ He $p \pi^{-}$ black line MC dd $\rightarrow ({}^{4}$ He $-\eta)_{bound} \rightarrow {}^{3}$ He $n \pi^{0}$

Summary

- Exclusive measurement with the ramped beam
- two reaction channels:
 - dd \rightarrow ³He $p \pi$ ⁻
 - dd \rightarrow ³He n $\pi^0 \rightarrow$ ³He n $\gamma\gamma$
- no η -⁴He bound state observed in 2008 data.
- upper limit estimated: from 20 to 27 nb (on 90 % C.L.) (2008 data)
- preliminary excitation functions of the 2010 data does not reveal signal of the mesic nucleus (3% data sample for ³He $p \pi^{-}$ and full data sample for ³He $n \pi^{0}$)
- ongoing analysis

Thank you

dd \rightarrow ³He $p \pi^{-}$ vs dd \rightarrow ³He $n \pi^{0}$

$$|II_3 > d: |00 > dd: |00 > {}^{3}\text{He}: |\frac{1}{2}\frac{1}{2} >$$

$$I_3(dd) = I_3(^{3}\text{He}) + I_3(N^*)$$

$$N*: |\frac{1}{2} - \frac{1}{2} >$$

$$p:|\frac{1}{2}\frac{1}{2}>\pi^-:|1-1>n:|\frac{1}{2}-\frac{1}{2}>\pi^0:|10>$$

$$\frac{\sigma(\mathbf{N}^* \to p\pi^-)}{\sigma(\mathbf{N}^* \to p\pi^0)} = \frac{|<\frac{1}{2}\frac{1}{2}}{|<\frac{1}{2}-\frac{1}{2}} \frac{1-1|\frac{1}{2}-\frac{1}{2}>|^2}{1-0|\frac{1}{2}-\frac{1}{2}>|^2} = \frac{|-\sqrt{\frac{2}{3}}|^2}{|\sqrt{\frac{1}{3}}|^2} = 2$$

History of a search for η -mesic nuclei

• 1985: Bhalerao & Liu:

attractive interaction η -N

• 1986: Haider & Liu:

first predictions for η -mesic nuclei (for A>10)

Series of experiments (no conclusive results):

Chrien et al. (1998) $\pi^+ + {}^{16}O \rightarrow p + \eta - {}^{15}O$

Johnson et al. (1993) $\pi^+ + {}^{18}O \rightarrow \pi^- + \eta^{-18}O$

• 1993-2002 new data:

 η -N scattering length much bigger than expected.

• 1991-2002 T. Ueda, C. Wilkin, S.A. Rakityansky and others: new calculations and theoretical models which predict the existence of

the η -mesic nuclei with light nuclei e.g. d- η , ³He- η , ⁴He- η , T- η

COSY accelerator in Juelich (Germany)

Beam:

 Unpolarized and polarized protons or deuterons.

Energy range:

- T_{p} to 2.8 GeV
- T_d to 2.3 GeV

(maximum momentum: 3.7 GeV/c)

Cooling:

- stochastic
- Electron beam

Nb of particles: 10¹¹

Ramped beam

(COoler SYnchrotron)

Experiments, detectors: ANKE, EDDA, WASA, TOF

All cuts

- Level_0 -general cuts (data preselection)
- Level_1 -³He identification
- Level_2 -nucleon-pion identification
- Level_3 -search for the (⁴He- η)_{bound} Signal Rich Region

before cuts (preselection)
 Trigger7
 no El22_FRH2

1) 1 charged in FD

2) Veto FRH3,FRH4,FRH5

3) Edep(FRH1)∈(0.15,0.4)GeV

combination of 2γ

Luminosity I Absolute normalization dd → ³He *n*

³He selection

MM(³He) -neutron

L=117.9 ±13.6 nb⁻¹

stat: ±4.5 % syst(background subtract):±8% param. from SATURNE: ±7%

Parametrization from:Annette Pricking PhD Universität Tübingen, Germany (2011)

Reference to SATURNE data: G.~Bizard et al., Phys. Rev. C 22 (1980) 1632.

Luminosity II (beam momentum dependence)

Quasi-elastic scattering: dd → pp (nn)_{spec}

- One charged in FD && one charged track in CD.
- Coplanarity condition $\Delta \phi < 20 \text{ deg.}$
- Cut on E in scintillator barrell
- (π background reduction).

Coplanarity

Excitation functions (not normalized)

Additional cuts

р

³He ions identification in Forward Detector

Experimental indications of the existence \Box of a bound state in the η -He system

Also total x-section $pd \rightarrow {}^{3}He\eta$ and $dd \rightarrow {}^{4}He\eta$ SPES-3 and SPES-4 @SATURNE N. Willis et al. Phys.Lett. B406(1997). $dp \rightarrow {}^{3}He\eta$

Full circles: COSY-ANKE

(T.Mersmann et al., Phys. Rev. Lett. 98 242301-1-4 (2007))

Empty circles: COSY-11

(J.Smyrski et al., Phys. Lett B 649 258-262 (2007))

Also total x-section γ^3 He $\rightarrow \eta^3$ He Crystal Ball-TAPS@MAMI F. Pheron et al. Phys.Lett. B709 (2012).

Cross-section estimate dd \rightarrow ⁴He $\eta \rightarrow$ ³He $p \pi^{-}$

σ~ 15 nb

R. Frascaria et al., Phys. Rev. C 50 (1994) 573.
N. Willis et al., Phys. Lett. B 406 (1997) 14.
A. Wrońska et al., Eur.Phys.J. A26 (2005) 421-428.

Probablity of the decay $({}^{4}\text{He }\eta)_{bound} \rightarrow {}^{3}\text{He }p\pi^{-}$ $\sim 1/4 \times 1/2 = 1/8$ dd $\rightarrow {}^{3}\text{He }p\pi^{-}$ dd $\rightarrow {}^{3}\text{He }n\pi^{0}$ dd $\rightarrow {}^{3}\text{He }n\pi^{0}$ dd $\rightarrow T n\pi^{+}$ dd $\rightarrow T p\pi^{0}$ $\eta \ n \rightarrow p\pi^{-}$ one of the possible four channels $\sigma(\text{dd} \rightarrow ({}^{4}\text{He }\eta)_{bound} \rightarrow {}^{3}\text{He }p\pi^{-}) = 2 \text{ nb}$

Theta [deg]

Acceptance for dd \rightarrow (η -4He)_{bound} \rightarrow ³He $p \pi$ ⁻

Three-particle cut

Four-particle reactions

•black :dd \rightarrow ³He $p \pi^{-}$ •blue :dd \rightarrow ³He $p \pi^{-} \pi^{0}$

Quasi-elastic reactions

dd \rightarrow pp (nn)_{spect}

 $dd \rightarrow d_{\text{beam}} p_{\text{target}} n_{\text{spect}}$

$$dd \rightarrow p_{beam} d_{targed} n_{spect}$$

 $dd \rightarrow pp (nn)_{spect} \rightarrow d \pi^{+} (nn)_{spect}$

 $dd \rightarrow dd$

other reactions (non-coplanar)

Quasi-elastic reactions background

Quasi-elastic reactions MC simulations

Quasi-elastic reaction (dp)

Quasi-elastic reaction $(d\pi^+)$

other reactions

Momentum reconstruction for p and $\pi^{\text{-}}$

$$|\vec{p_1}| = |\vec{p_k}| \times \frac{\sin\beta}{\sin(\alpha+\beta)}, |\vec{p_2}| = |\vec{p_k}| \times \frac{\sin\alpha}{\sin(\alpha+\beta)}$$

Proton / pion identification

dd \rightarrow ³He *n*

Example of the excitation function (simple simulation)

x-section=10 nb, L=10³¹ cm⁻²s⁻¹ T=10 dni Breit-Wigner: E0=-20 MeV, Γ=25 MeV

Search for the resonance-like structure

with the maximum below the dd \rightarrow ⁴He η threshold

Nucleon momentum distribution in ⁴He

V. Hejny, PhD Thesis, Justus-Liebig University Gissen (1998).
J. S. McCarthy et al., Phys. Rev. C15, 13961414 (1977).

η -mesic nuclei in heavy systems

C. Garcia-Recio, T. Inoue, E. Oset Phys. Lett. B550 (2002) 47

WASA-at-COSY

 4π detector for charged and neutral particles

WASA-at-COSY ³He Π-O

Forward detector:

Scattering angle coverage 3°-18°

Scattering angle resolution 0.2°

Maximum energies for stopping $\pi \pm p/d/\alpha 170/300/400/900 \text{ MeV}$

Time resolution <3ns

Relative energy resolution particles T_{stop} <T < 2T_{stop} 3-8% stopped particles T<T 1.5-3%

COSY-GEM results $p+^{27}AI \rightarrow ^{3}He+(\eta -^{25}Mg) \rightarrow ^{3}He +\pi^{-}+p +X$

A. Budzanowski et al., Phys Rev. C79 (2009).