Are there bound eta mesons?

Offen im Denken

SBURG

UNIVERSITÄT

Hartmut Machner

Fakultät für Physik, Universität Duisburg-Essen

- > A rather large s-wave η -nucleon scattering length lead to the idea of bound η -nucleus systems.
- This would be a strong bound system, contrary to pionic atoms (Coulomb bound).
- How to measure?

1. Direct Production

- The η meson has to be produced at rest
- Best: transfer reactions, one ejectile carries the beam momentum (recoilles kinematics) FF=exp[-(ħq)²/BE]
- But (d,³He) bad because break up protons and ³He have the same magnetic rigidity
- 2. FSI
 - Best: two particle final state
 - Limited to light nuclei where the existance of bound states is improbable

What to expect?

DUISBURG ESSEN Offen im Denken

Authors	a _R (fm)	a _l (fm)
Haider & Liu (set I)	0.28	0.19
Friedman, Gal & Mares (GW)	0.22	0.24
Hayano, Hirenzaki&Gillitzer	0.718	0.269
Garcia-Recio et al.	0.264	0.245
Sofianos et al.	< 0.47	0.3

Chrien et al. PRL 60(88)2595 • q=200 MeV/c

• inclusive

Lieb et al. (unpublished)

Peak due to detector acceptance?

DCX : Johnson et al., PRC 47(93)2521

Offen im Denken

Sokol et al.: γ +¹²C \rightarrow N+ (π ++n) +X

Both ejectiles are anti-correlated;

 $< E_{\pi} >= 300 \text{ MeV}, < E_{n} >= 100 \text{ MeV}$

But beam momentum nucleon not measured!

 $\sigma(\pi n) = (12.2 \pm 1.3) (\mu b)$

Pheron (CB+TAPS)

 $\gamma + ^{3}\text{He} \rightarrow (\pi^{0} + p) + X$

Difference of excitations functions of $\pi^0 - p$ back-to-back pairs with opening angles between 165° - 180° and 150° - 165°. Insert excitations functions for different ranges of the opening angle $\Psi_{\pi p}$ after removal of the overall energy dependence $\propto E_{\gamma}^{-6}$. Vertical dotted lines: coherent η -production threshold.

Unpublished searches:

$$d + {}^{12}C \rightarrow {}^{3}He + X @ \text{GSI} \text{ fragment separator}$$

difficult to distinguish break up protons from ³He;

scan around η threshold, the bound , the bound $A_{\eta}\mbox{-system}$ carries the full beam momentum:

$$p + d \rightarrow \eta + {}^{3}\text{He} \rightarrow p + p + p + \pi^{-} @ \text{COSY TOF (unpublished)}$$

 $d + d \rightarrow \eta + {}^{4}\text{He} \rightarrow \pi^{-} + p + {}^{3}\text{He} @ \text{WASA (PRC 87 (2013) 035204)}$

Coherent photproduction

 $\gamma + {^7}\text{Li} \rightarrow \eta + 7\text{Li} \rightarrow 2\gamma(6\gamma) + X$ (Eur. Phys. J. A (2013) 49: 38)

UNIVERSITÄT

<u>B</u>URG

Offen im Denken

GEM @ COSY (transfer reaction)

Offen im Denken

DUISBURG

UNIVERSITÄT

Best target: odd-odd leads to even-even, low level density. Not existent as solid material. Compromise: even odd

³He in BIG KARL, carries the full beam momentum

 π -p almost back to back in ENSTAR

3-particle coincidence + 3 more constraints!

Beam pipe from carbon fibre

Particle identification with BK focal plane detectors

Event of interest:

Two correlated particles: 5+4=9 fold coincidence

Pion leaves the detector: outer

layer fires

Proton stopped in the middle layer

Coincidences ³He + ENSTAR bb

Offen im Denken

DUISBURG ESSEN

 $BE_0 = 12.0 \pm 2.2 \text{ MeV}$ FWHM = 11.04±4.0 MeV

Gaussian errors: $(N - BG)/\sqrt{(BG + \sigma_{BG})} = 5.3\sigma$ Poisson errors: $(N - BG)/\sqrt{(BG + \sigma_{BG})} = 4.9\sigma$ Likelihood $\sqrt{-2\Delta lnL} = 6.2\sigma$

L.-C. Liu (priv. comm.)

Expected(for the present system):

σ=5-22 nb

acceptance, isospin yields $\sigma_{exp.} = 0.46 \pm 0.16 (stat.) \pm 0.06 (syst.) \text{ nb}$ $\sigma(pd \rightarrow \eta^{3}He, BK \ accept) = 39 \mu b$

Haider&Liu, J. Phys G 37(10)125104

$$\sigma \propto |f_{bound}|^2$$
 dashed
 $\sigma \propto |f_s + f_{bound}|^2$
 $f_{bound} = BW$

Friedman et al: $\Re(a_{\eta N}) \approx 1 \text{ fm}$

Two body final state interaction **

Offen im Denken

Tacid assumption:

$$\frac{p_i}{p_f} \left(\frac{d\sigma}{d\Omega} \right) = \left| f \right|^2 = \left| f_B \cdot FSI \right|^2 = \left| f_B \right|^2 \cdot \left| FSI \right|^2$$

s-wave, and then $d\sigma/d\Omega = \sigma/4\pi$

$$FSI = \frac{1}{1 - i \cdot a \cdot p_f + \frac{1}{2} a \cdot r_0 \cdot p_f^2}$$

Quasi-bound requires:

• $Im(a_{nA}) > 0$ from unitarity

• $|Im(a_{nA})| < |Re(a_{nA})|$ to have a pole in the negative energy half plane

 $-Re(a_{nA}) < 0$ to have a bound state, but

 $|FSI|^2 \propto 1/Re(a_{\eta A})^2$ thus experiments give no sign

 $|Q_0(\eta^3 He)| < |Q_0(\eta^4 He)|)| < |Q_0(\eta^7 Be)|$

Otherwise: virtual (unphysical) state

Excitation function: dp \rightarrow ³He η

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

T. Mersmann et al., PRL 98 (07) 242301

$$a_{_{3}_{He\eta}} = \left[\pm \left(10.7 \pm 0.8_{_{-0.5}}^{_{+0.1}} \right) + i \cdot \left(1.5 \pm 2.6_{_{-0.9}}^{_{+1.0}} \right) \right] \text{fm}$$

$$r_{_{0}} = \left[\left(1.9 \pm 0.1 \right) + i \cdot \left(2.1 \pm 0.2_{_{-0.0}}^{_{+0.2}} \right) \right] \text{fm}$$

$$| \mathbf{O}_{-} | \approx \mathbf{O}_{-} \mathbf{O}_{-$$

Smyrski et al. $a = \pm (2.9 \pm 2.7) + i(3.2 \pm 1.8) \text{ fm}$ $r_0 = 0 \text{ fm}$

15

Scattering length of the ANKE data

DUISBURG ESSEN Offen im Denken

UNIVERSITÄT

500 $\frac{J_B}{-iap}$ 400 300 പ്പ) പ $a_r = (3.21 \pm 0.000)$ fm 200 $a_{i}=(1.47\pm0.34) \text{ fm}$ 100 9 5 6 7 8 10 11 3 2 4 12 Q (MeV)

Condition to have a pole: $|a_i| < |a_r|$

Legendre polynomials

Exp.	a ₀	a ₂	a ₄
ANKE	ANKE 1.30 ±0.18		
GEM	1.27 ±0.03	-0.29 ±0.06	1.65 ±0.07

s, p and d-waves!

Excitation Function

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Same momentum range as in p+d, but less data points. Cross section less than 5%!

How to extract s-wave?

$\mathcal{M} = A(\vec{\epsilon}_1 \times \vec{\epsilon}_2) \cdot \hat{p}_d + B(\vec{\epsilon}_1 \times \vec{\epsilon}_2) \cdot [\hat{p}_d \times (\hat{p}_\eta \times \hat{p}_d)] (\hat{p}_\eta \cdot \hat{p}_d)$ $+ C[(\vec{\epsilon}_1 \cdot \hat{p}_d) \vec{\epsilon}_2 \cdot (\hat{p}_\eta \times \hat{p}_d) + (\vec{\epsilon}_2 \cdot \hat{p}_d) \vec{\epsilon}_1 \cdot (\hat{p}_\eta \times \hat{p}_d)],$

$A(\theta) = A_0 + A_2 P_2(\cos \theta)$

fit parameter	value	
$ A_0 ^2$	6.6 ± 1.7	
$2Re(A_{0}^{*}A_{2})$	-25.0 ± 9.5	
$ A_2 ^2$	48.4 ± 14.5	
$ B ^{2}$	9.3 ± 5.1	
$ C ^2$	0	

Better fit than partial wave amplitudes (s, p, 2d waves), because less parameters (4 instead of 7)

Angular dependence due to s-d interference

Final result

DUISBURG ESSEN Offen im Denken

$p+^{6}Li \rightarrow \eta +^{7}Be \ 11 \ MeV \ above \ the should be above the state of the second secon$

Offen im Denken

previous exp. 4 states (L=1+L=3)

p+⁶Li→γγ+X

Tests of MWAC with TIFR Pelletron beams of

- ⁷Li at 48 MeV,
- ¹²C at 60 MeV,
- ¹⁶O at 50 MeV.

All focal plane detectors in big vacuum box

Subtraction of L=3 yield

Offen im Denken

UNIVERSITÄT D_U_I_S_B_U_R_G

Al-Khalili et al.:

$$\frac{d\sigma(p^{6}\mathrm{Li} \to \eta^{7}\mathrm{Be})}{d\Omega} = \mathsf{C}\frac{p_{\eta}^{*}}{p_{p}^{*}} |f(pd \to \eta^{3}\mathrm{He})|^{2} \sum_{j} \frac{2j+1}{2} \mathsf{F}_{j}^{2}$$

C overlapp cluster wavefunctions $f(pd \rightarrow \eta^{3}\text{He})$ spin averaged amplitude F_{i} form factor

$$\frac{d\sigma(L=1)}{d\Omega} \approx \frac{d\sigma(exp.)}{d\Omega} \frac{\sum_{j=3/2,1/2} \frac{2j+1}{2} F_j^2}{\sum_{j=3/2,1/2,7/2,5/2} \frac{2j+1}{2} F_j^2}$$

Mumbai Group

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Influence effective range

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Final state	a _r	a _i	E_{B}	comment
³ Heη	2.9 ±2.7	3.2 ± 1.8	2.3	Smyrski
				no e.r.
³ Heη	3.21 ± 0.19	1.47 ± 0.34	4.1±0.4	data Mersmann
				no e.r.
³ Heη	10.7 ±0.9	1.5 ±2.8	0.3	data Meersmann
				er
411-	04105	00105		
Heη	3.1 ± 0.5	0.0 ± 0.5	4	GEM
				no e.r.
⁴Heη	6.2 ± 1.9	0.001 ± 6.5	10±3	GEM
				e.r.
⁷ Βeη	9.18	8.83	0.33	calculation

Data contradict expectations

Offen im Denken

DUISBURG ESSEN

