The role of nucleon resonances in η ' production processes

Part of a baryon spectroscopy program:

•
$$\gamma + N \rightarrow M + B$$

•
$$\pi + N \rightarrow M + B$$

$$(M = \pi, \eta, K, \eta', \rho, \omega, K^*, \phi)$$

- $N + N \rightarrow M + B + N$
- $\gamma + N \rightarrow M + M' + B$
- $\pi + N \rightarrow M + M' + B$

<u>Collaboration:</u> Jülich Athens/GA Washington/DC *Reaction Theory: MN*→*M'B reactions*

Jülich DCC model (TOPT):

T = V + VGT

C. Schütz et al., PRC49 '94; PRC57 '98O. Krehl et al., PRC62 '00A. M. Gasparyan et al., PRC68 '03M. Döring et al., NPA829 '09; NPA851 '11D. Rönchen et al., EPJA47'13

Basic features:

- Coupled channels (so far): πN , ηN , $K\Lambda$, $K\Sigma$, $\pi\pi N$ [σN , ρN , $\pi\Delta$]
- Analyticity
- 2-body unitarity & some requirements for 3-body unitarity
- Chiral Lagrangian of Wess and Zumino [PR163, '67; PR161, '88]
 - Hadron exchange provides the relevant dynamics
 - All partial waves are linked by u- and t-channel processes
 - Reaction channels are linked by SU(3) in the Lagrangian framework
 - Minimum # of explicit resonances needed due to the structured backgroung

Reaction Theory: $\gamma N \rightarrow MN$ (fully gauge invariant DCC)

$$\Gamma^{\mu} = \Gamma_{0}^{\mu} + m_{KR}^{\mu} G[F\tau] + [F_{0}\tau] G \left(M_{u}^{\mu} + M_{t}^{\mu} + M_{c}^{\mu} \right)_{L}$$

Experimental data: some of the issues

- Scarcity of (2-body) hadronic reactions data:
 - \rightarrow apart from the πN elastic scattering, only ~ 3800 data points

(~24600 in photoproduction)

- \rightarrow existing data suffers from large uncertainties
- \rightarrow many of them are incompatible with each other
- \rightarrow about dozen total cross section data points for η ' and ϕ .

<u>HADES at GSI</u>: $\pi N \rightarrow \omega N$, ρN reactions (W< 2.4 GeV); no spin observables. <u>J-PARC</u>: $\pi N \rightarrow KY$, $\pi \pi N$ <u>EIC</u> at Jlab in ~ 2020 ??

One of the major limitations for developing more accurate coupled-channels models.

Accurate data from CELSIUS, COSY on NN \rightarrow NBM (M= π , η , K, η' , ω , ϕ) help constrain model parameters.

Experimental data: η' production reactions

- $\gamma + N \rightarrow \eta' + N$:
- $d\sigma/d\Omega$ CLAS-'09, free proton CBELSA/TAPS-'09, free proton CBELSA/TAPS-'11, quasi-free neutron & proton

 Σ , E (being measured at CLAS & CBELSA/TAPS)

- $\pi + N \rightarrow \eta' + N$:
- σ (~15 data points with large uncertainties),
 '68 '72, Baldini et al., *Total Cross-Sections for Reactions of High Energy Particles*, Landolt-Boernstein, edited by H. Schopper (Springer, Berlin, 1988), Vol. I/12a.

• N + N $\rightarrow \eta'$ + N + N: σ COSY11-'00,'04 proton COSY11-'10, neutron (upper limit) $d\sigma/d\Omega_{\eta'}$ $d\sigma/dM_{\eta'p}$, $d\sigma/dM_{pp}$ COSY11-'07 proton

Approach to η'/ϕ production reactions:

Elastic scattering (below first inelastic threshold):

(full phase structure)

$$N^{X} = 1 - i\rho X = e^{i\delta^{X}} \cos \delta^{X} \quad (\text{Watson's factor})$$

$$|F_{K}\rangle = (1 + K^{NP}G^{R}) |F_{0}\rangle$$

$$S_{K}^{-1} = S_{0}^{-1} - \langle F_{0} | G^{R} | F_{K} \rangle = E - m_{0} - \langle F_{0} | G^{R} | F_{K} \rangle$$

$$\frac{\Gamma}{2} = \langle F_{K} | \pi \delta(E - H_{0}) | F_{K} \rangle = \langle F_{K} | \rho | F_{K} \rangle$$

$$\rho = \text{phase-space factor}$$

$$K^{NP} = V^{NP} + V^{NP}G^{R}K^{NP}$$

Approach to η'/ϕ production reactions:

Elastic scattering (below first inelastic threshold):

(full phase structure)

$$N^{X} = 1 - i\rho X = e^{i\delta^{X}} \cos \delta^{X} \quad (\text{Watson's factor})$$

$$|F_{K}\rangle = (1 + K^{NP}G^{R}) |F_{0}\rangle$$

$$S_{K}^{-1} = S_{0}^{-1} - \langle F_{0} | G^{R} | F_{K} \rangle = E - m_{0} - \langle F_{0} | G^{R} | F_{K} \rangle$$

$$\frac{\Gamma}{2} = \langle F_{K} | \pi \delta(E - H_{0}) | F_{K} \rangle = \langle F_{K} | \rho | F_{K} \rangle$$

$$K^{NP} = V^{NP} + V^{NP}G^{R}K^{NP}$$

$$(\text{Watson's factor})$$

Phenomenology:

$$T = \left\{ N^{\boldsymbol{X}} g \frac{1}{E - m_B + i N^{\boldsymbol{X}} \frac{\Gamma_B}{2}} g N^{\boldsymbol{X}} \right\} + N^{\boldsymbol{X}} K^{NP}$$

(full phase structure kept)

Parameters: $[g, m_B, \delta^X]$

Approach to η'/ϕ production reactions:

Full coupled-channels amplitude:

$$T_{\alpha'\alpha} = \underbrace{\sum_{r'r} \left\{ N_{\alpha'}^{X} \left| \hat{F}_{K} \right\rangle_{\alpha',r'} \frac{1}{S_{K\,r'r}^{-1} + i \sum_{\beta} N_{\beta}^{X} \frac{\Gamma_{r'r\beta}}{2}} \left\langle \hat{F}_{K} \right|_{\alpha,r} N_{\alpha}^{X} \right\}}_{T^{P}} + \underbrace{N_{\alpha'}^{X} \hat{K}_{\alpha'\alpha}^{NP}}_{X(=T^{NP})}$$

$$\begin{split} N_{\alpha'}^{X} &\equiv 1 - i\rho_{\alpha'}X_{\alpha'\alpha'} = \frac{1}{2} \left(\eta_{\alpha'}^{X} e^{i2\delta_{\alpha'}^{X}} + 1 \right) \xrightarrow{\eta_{\alpha'}^{X} = 1} e^{i\delta_{\alpha'}^{X}} \cos \delta_{\alpha'}^{X} \quad (\text{Watson's factor}) \\ |\hat{F}_{K}\rangle_{\alpha',r'} &\equiv |F_{K}\rangle_{\alpha',r'} - i \sum_{\beta \neq \alpha'} \rho_{\beta} \hat{K}_{\alpha'\beta}^{NP} |F_{K}\rangle_{\beta,r'} \\ \frac{\Gamma_{r'r\beta}}{2} &\equiv \langle F_{K}|_{\beta,r'} \rho_{\beta} |\hat{F}_{K}\rangle_{\beta,r} \\ \hat{K}_{\alpha'\alpha}^{NP} &\equiv K_{\alpha'\alpha}^{NP} - i \sum_{\beta,\beta' \neq \alpha'} K_{\alpha'\beta'}^{NP} \left((D^{X})^{-1} \right)_{\beta'\beta} \rho_{\beta} K_{\beta\alpha}^{NP} \end{split}$$

$$D^X_{\beta'\beta} \equiv \delta_{\beta'\beta} + i\rho_{\beta'}K^{NP}_{\beta'\beta}$$

Model for η 'productions: dynamical content

quasi-free: Fermi folding

present calc.:

$$T_{\eta'\alpha} \cong \sum_{r} \left\{ N_{\eta'}^{X} g_{r\eta'} \frac{1}{E - m_r + i \sum_{\beta} N_{\beta}^{X} \frac{\Gamma_{r\beta}}{2}} g_{r\alpha} N_{\alpha}^{X} \right\} + N_{\eta'}^{X} V_{\eta'\alpha}^{NP} \quad (\alpha = \gamma, \pi) \qquad \beta = \mathcal{M}, \ \eta', \gamma = 1$$

Model for η ' productions: effective Lagrangian approach

η' production reactions: a combined analysis [Huang, Haberzettl, Nakayama, PRC87'13]

Res. considered: minimum number of spin-1/2 and -3/2 resonances to fit the existing data in photo- and hadron-reactions: above threshold: $S_{11}(1925)$, $P_{13}(2050)$, $P_{11}(2130)$ sub. threshold: $P_{13}(1720)$ (required for d σ /dW in pp $\rightarrow \eta$ 'pp)

only photoreaction \rightarrow different sets of resonances are possible

Res. masses and widths: largely constrained by photoproduction

Role of higher-spin res. : requires spin-polarization observables (Σ , T, etc)

η *photoproduction: free proton (combined analysis)*

 $[\]cos \theta$

η 'photoproduction: free proton (combined analysis)

η 'photoproduction: dynamical content

 $\{P_{13}(1720), S_{11}(1925), P_{13}(2050), P_{11}(2130)\}$

η 'photoproduction: dynamical content

{ $P_{13}(1720)$, $S_{11}(1925)$, $P_{13}(2050)$, $P_{11}(2130)$ }

PDG: P₁₃(1720)****, S₁₁(1895)**, P₁₃(2040)*, P₁₁(2110)*

η 'photoproduction: resonance parameters (combined analysis)

	free p		quasi-free p
	CLAS	CBELSA/TAPS	
$\overline{\chi^2/N}$	0.65	0.53	0.77
$\overline{g_{NN\eta'}}$	1.00 ± 0.06	1.17 ± 0.31	1.00 ± 0.24
$\lambda_{NN\eta'}$	0.53 ± 0.06	0.44 ± 0.22	0.64 ± 0.24
$\Lambda_v \; [\text{MeV}]$	1183 ± 5	1244 ± 35	1221 ± 28
\hat{h}	3.89 ± 0.18	5.37 ± 1.57	4.27 ± 0.89
$\overline{P_{13}(1720)}$			
M_R [MeV]	1720	1720	1720
Γ_R [MeV]	200	200	200
$\sqrt{\beta_{N\eta'}}A_{1/2}$ [10 ⁻³ GeV ^{-1/2}]	0.09 ± 0.03	0.09 ± 0.06	0.06 ± 0.11
$\sqrt{\beta_{N\eta'}}A_{3/2}$	-0.16 ± 0.05	-0.13 ± 0.09	-0.03 ± 0.06
$P_{13}(2050)$			
M_R	2050 ± 4	2045 ± 7	2048
Γ_R	140 ± 10	52^{+184}_{-52}	51^{+241}_{-51}
$\sqrt{\beta_{Nn'}}A_{1/2}$	-5.71 ± 0.17	-2.02 ± 0.26	-3.14 ± 0.43
$\sqrt{\beta_{N\eta'}}A_{3/2}$	9.89 ± 0.30	7.31 ± 0.93	5.75 ± 0.79
$S_{11}(1925)$			
M_R	1924 ± 4	1926 ± 10	1925
Γ_R	112 ± 7	99 ± 23	145 ± 45
λ	$1.00^{+0.00}_{-0.06}$	$1.00^{+0.00}_{-0.98}$	$1.00^{+0.00}_{-0.95}$
$\sqrt{\beta_{Nn'}}A_{1/2}$	-11.84 ± 0.41	-11.07 ± 1.43	-19.93 ± 1.56
$P_{11}(2130)$			
M_R	2129 ± 5	2123 ± 23	2126
Γ_R	205 ± 12	246 ± 54	170 ± 178
λ	$1.00^{+0.00}_{-0.04}$	$1.00^{+0.00}_{-0.61}$	$1.00^{+0.00}_{-0.05}$
$\sqrt{\beta_{N\eta'}}A_{1/2}$	-11.34 ± 0.62	-18.80 ± 0.90	-7.45 ± 0.94

η 'photoproduction: data comparison (quasi-free proton)

 $\cos \theta$

η 'photoproduction: quasi-free proton (combined analysis)

 $\cos \theta$

η 'photoproduction: quasi-free neutron (combined analysis)

Present analysis: $g_{NN\eta'} \sim 1.0$ (cannot much larger)

Particular interest in connection to the "nucleon-spin crisis" (EMC collaboration, PLB206, '88). NN η ' coupling constant is related to the flavor-singlet axial charge G_A through the U(1) Goldberger-Treiman relation:

$$2m_{N}G_{A}(0) \approx \sqrt{2N_{F}}F_{\pi}g_{NN\eta'}(0) + F_{\pi}^{2}m_{\eta'}^{2}g_{NNG}(0)$$

$$G_{A}(0) \approx 0.16\pm0.10$$
(SMC collaboration,
PRD56, '97)
$$quark contribution to the proton "spin"$$

$$gluon contribution to the proton "spin"$$

$$gluon contribution to the proton "spin"$$

η 'photoproduction: comparison with η photoproduction

PDG: P₁₃(1720)****, S₁₁(1895)**, P₁₃(2040)*, P₁₁(2110)*

η 'hadroproduction: NN $\rightarrow \eta$ 'NN (combined analysis)

η 'hadroproduction: NN $\rightarrow \eta$ 'NN (combined analysis)

η 'hadroproduction: NN $\rightarrow \eta$ 'NN (combined analysis)

Parameters	$S_{11}(1925)$	$P_{11}(2130)$	$P_{13}(1720)$	$P_{13}(2050)$
M_{p} (MeV)	1924	2129	1720	2050
Γ_R^{κ} (MeV)	112	205	200	140
$\beta_{Nn'}$ (%)	6	3	0.09	2
$\beta_{N\pi}$ (%)	22	25	$[11 \pm 3] 16$	25
$\beta_{Nn}(\%)$	4	$[61 \pm 60] 0.5$	$[4.0 \pm 1.0] 9$	0.03
$\beta_{N_0}(\%)$	22	62	[70-85] 75	37
$\beta_{N_{\infty}}(\%)$	47	13	2	36
$(g_{RNn'}, \lambda)$	(0.68, 1.00)	(1.77, 1.00)	(1.20, -)	(1.38, -)
$(g_{RN\pi}, \lambda)$	(-0.36, 1.00)	(-1.28, 1.00)	(-0.17, -)	(-0.12, -)
(g_{RNn}, λ)	(-0.28, 0.81)	(-0.35, 0.34)	(-1.50, -)	(-0.04, -)
$(g_{RN\rho}^{(1)}, g_{RN\rho}^{(2)}, g_{RN\rho}^{(3)})$	(-2.42, 0.04, -)	(2.58, -0.14, -)	(-23.63, 54.09, 16.72)	(0.50, 9.10, 28.66)
$(g_{RN\omega}^{(1)}, g_{RN\omega}^{(2)}, g_{RN\omega}^{(3)})$	(1.02, -1.70, -)	(2.47, 0.53, -)	(-27.64, 138.87, -318.85)	(-3.19, -16.75, -36.39)

η 'hadroproduction: $\pi N \rightarrow \eta$ 'N (combined analysis)

Double-bump structure:

- interference between $S_{11}(1925)$ and $P_{13}(2050)$
- remains to be confirmed
- if corroborated, rules out the sub-threshold resonance-dominance assumption of S₁₁(1535) [Xu and Cao, PRC78'08] [motivated by its strong coupling to η and η' (pentaquark configuration) [B. Zong, proc. NSTAR13, Peniscola, Spain]]

η 'hadroproduction: $\pi N \rightarrow \eta$ 'N (combined analysis)

Double-bump structure:

- interference between $S_{11}(1925)$ and $P_{13}(2050)$
- remains to be confirmed
- if corroborated, rules out the sub-threshold resonance-dominance assumption of S₁₁(1535) [Xu and Cao, PRC78'08] [motivated by its strong coupling to η and η' (pentaquark configuration) [B. Zong, proc. NSTAR13, Peniscola, Spain]]

 $T = T^{P}(s-channel) + T^{NP}(=X)$

$$X = N^X_{\ \eta'} \ K^{NP} \sim V^{NP}$$
 ,

$$\begin{split} |X| << |T^{P}| \quad (\text{consistent with small FSI,} \\ N^{X}{}_{\eta'} = 1 \text{- i } \rho_{\eta'} X_{\eta' \ \eta'} \sim 1 \) \end{split}$$

η 'N scattering length: a rough estimate

Present phenomenology:

 $a_{\eta' N} \sim (0.017 + i \ 0.005) \ \text{fm}$

	(Oset & Ramos, PLB704, 334(2011)			
α	$a_{\eta p}$ [fm]	a _{ηP} [fm]	$a_{\eta' p}$ [fm]	$ a_{\eta'p} $ [fm]	
-0.126	0.272 + i0.246	0.367	0.073 + i0.019	0,075	
0.204	0.247 + i0.233	0.340	-0.072 + i0.020	0,075	
-0.193	0.276 + i0.248	0.371	0.098 + i0.020	0,1	
0.256	0.241 + i0.231	0.334	-0.098 + i0.020	0,1	
-0.333	0.282 + i0.251	0.378	0.149+i0.020	0,15	
0.352	0.228 + i0.225	0.320	-0.149+i0.021	0,15	

Full DCC: [D. Roenchen et al., EJPA 47, 44(2013)]

 $a_{\eta N} = (0.49 + i 0.24) \text{ fm} \pmod{A}$ = (0.55 + i 0.24) fm (model B)

Summary:

Phenomenological approach to two-body reactions keeping the full phase structure of the reaction amplitude developed.

Combined analysis of photo- and hadro-reactions constrain the model parameters: $\gamma + N \rightarrow \eta' + N$ (free and quasi-free) $N + N \rightarrow \eta' + N + N$

• unique set of minimal number of spin-1/2 and -3/2 resonances obtained

 $\{P_{13}(1720), S_{11}(1925), P_{13}(2050), P_{11}(2130)\}$

- results consistent with very small FSI
- Role of FSI : spin-polarization observables can help to learn more (sensitive to the relative phase).
- Role of higher-spin resonances: spin-polarization observables required.
- Same approach to other meson production reactions where the hadronic data are scarce to fix the FSI : e.g., ϕ production.

