A search for deeply-bound kaonic nuclear states by in-flight ³He(K⁻, n) reaction at J-PARC

F. Sakuma, RIKEN

for the J-PARC E15 collaboration

- Introduction
- The J-PARC E15 experiment
- Preliminary results of 1st physics run
 Summary

II International Symposium on Mesic Nuclei, Jagiellonian University Cracow, September 22 - 25, 2013

Motivation: Embedding K⁻ in Nucleus

- Light mesons
 - $-\pi$ -N interaction is attractive
 - play an important role in a nucleus as "glue"

- Light S=-1 mesons?
 - Kaonic-atom experiments (KpX@KEK, DEAR/SIDDHARTA@DAΦNE) clarified strongly attractive K^{bar}-N interaction
 - What will happen when K^{bar} is embedded in nucleus?
 - K^{bar}-nucleus bound state?
 - high density?

Kaonic Nuclei

Kaonic nucleus is a bound state of nucleus and anti-kaon (K^{bar}NN, K^{bar}NNN, K^{bar}K^{bar}NN, ...)

T.Yamazaki, A.Dote, Y.Akiaishi, PLB587, 167 (2004).

Theoretical Situation

K⁻pp : the simplest K^{bar}-nuclear state

- Akaishi, Yamazaki [AY]
 - ATMS with phenomenological model
- Dote, Hyodo, Wise [DHW]
 - Variational with chiral-SU(3) model
- Ikeda, Sato [IS]
 - Faddeev with chiral-SU(3) model
- <u>Shevchenko, Gal, Mares [SGM]</u>
 - Faddeev with phenomenoligical model
- Wycech, Green [YG]
 - Variational with phenomenological model
- Arai, Yasui, Oka [AYO]

- Λ^* model

All studies predict existence of the K⁻pp \rightarrow However, B.E. and Γ are controversial 4

Koike and Harada, PRC80(2019)055208

Experimental Situation

K^{-}/π^{+} induced experiments

Experimental Situation [Cont'd]

p induced experiments

We need more studies in various channels! 6

The J-PARC E15 Experiment

Experimental Principle

A search for the simplest kaonic nucleus, K⁻pp, using ³He(*in-flight* K⁻,n) reaction

- two-nucleon absorption]
- hyperon decays

CAN be discriminated kinematically

J-PARC (Japan Proton Accelerator Research Complex)

Experimental Setup

The Goal of E15

- To investigate the kaonic nuclei
 - **(1)** Semi-Inclusive ³He(K⁻,n)
 - **(2)** Inclusive ³He(K⁻, Λ p)
 - **③** Exclusive ³He(K⁻, Λ pn)
 - Semi-Inclusive ³He(K⁻,p)
- Multi-nucleon absorption process
 - Hits of exotic production?
- Hyperon production
 - Nuclear dependence of Y* production

1: Semi-Inclusive ³He(K⁻,n)

Calculated formation-spectra for ³He(in-flight K-,n)

K⁻ + ³He → "K⁻pp" + n @ P_k=1GeV/c, θ =0°

1: Semi-Inclusive ³He(K⁻,n) [Cont'd]

Expected spectrum from MC (Geant4)

- All known K⁻N interactions are considered: ³He(K⁻,n) M.M. s
 - Cross-section [CERN-HERA-83-02]
 - Fermi-motion
 - Angular distribution
- Simple assumptions:

$$- \sigma_{tot} = 2^* \sigma_{K-p} + \sigma_{K-n} (~150 mb)$$

1: Semi-Inclusive ³He(K⁻,n) [Cont'd]

Expected spectrum from MC (Geant4)

- All known K⁻N interactions are considered:
 - Cross-section [CERN-HERA-83-02]
 - Fermi-motion
 - Angular distribution
- Simple assumptions:
 - $\sigma_{tot} = 2^* \sigma_{K-p} + \sigma_{K-n}$ (~150mb)
 - 2N abs.: $K^{-3}He \rightarrow \Lambda n p_s$
 - $\sigma/d\Omega=1$ mb/sr, isotropic
 - K⁻pp prod.: K⁻ ³He → K⁻pp n
 - $d\sigma/d\Omega$ =1mb/sr, isotropic
 - K⁻pp → Λp(25%), Σ⁰p(25%), πΣp(50%)

2: Inclusive ³He(K⁻, Λ p)

FINUDA: stopped K⁻

- Back-to-back Λp correlation
- BG from multi-N absorption? / 2-step processes?

E15: in-flight K⁻

- Λp correlation is NOT so simple
- Give some hints of multi-N absorption and the K⁻pp production

2: Inclusive ³He(K⁻,Λp) [Cont'd]

Expected (simplified) spectrum from MC (Geant4)

- All known K⁻N interactions are considered:
 - Cross-section [CERN-HERA-83-02]
 - Fermi-motion
 - Angular distribution
- Simple assumptions:
 - $\sigma_{tot} = 2^* \sigma_{K-p} + \sigma_{K-n}$ (~150mb)
 - − 2N abs.: K^{- 3}He \rightarrow Λ p n_s
 - $\sigma/d\Omega$ =1mb/sr, isotropic
 - − 3N abs.: K⁻³He \rightarrow Λ p n
 - $d\sigma/d\Omega$ =1mb/sr, isotropic
 - K⁻pp prod.: K⁻ ³He → K⁻pp n
 - $d\sigma/d\Omega$ =1mb/sr, isotropic
 - K⁻pp → Λp(25%), Σ⁰p(25%), πΣp(50%)

Λ p invariant mass spectrum

3: Exclusive ³He(K⁻,∧pn)

- The main goal of the E15 measurement
 - Will pin down the signature of the K⁻pp
 - large statistics , i.e., large beam-time is needed!!!
- Dalitz plot analysis helps us to investigate particle correlation
 CDS & NC Acceptance 3-body Phase Space (Dalitz's plot) at CM

17

3: Exclusive ³He(K⁻,∧pn)

- The main goal of the E15 measurement
 - Will pin down the signature of the K⁻pp
 - large statistics , i.e., large beam-time is needed!!!
- Dalitz plot analysis helps us to investigate particle correlation

Preliminary Results of 1st Physics Run

1st Stage Physics Run

Jun.2006	proposed and approved @ 1 st PAC		
Feb 2009	first beam transportation to K1.8BR		
Mar.11 2011	the earthquake		
May 2012	completion of spectrometer construction		
May 2013	1 st physics run		
May.23 2013	the accident		

 Accumulated data in the 1st stage physics run — ~1% of original proposal

period	primary beam intensity	duration	Kaons on target	
March, 2013	14.5 kW (18 Tppp, 6s cycle)	30 hours	0.9 x 10 ⁹	
May, 2013	24 kW (30 Tppp, 6s cycle)	88 hours	4.0 x 10 ⁹	
production target: Au 50% loss, spill length: ~2s, spill duty factor: ~45%				

Kaon-Beam Spectrometer

Cylindrical Detector System: pID

- CDC (15 layers, 1816ch) + CDH (36 seg) + 0.7T
 solid angle: 60% of 4π
- $\pi/K/p/d$ are clearly separated

Cylindrical Detector System: Tracking

- Designed performance was achieved
 - K^0/Λ are reproduced by the MC
- Resolution for K⁻pp→Ap reconstruction: ~10MeV/c²

Forward Neutral Particles

- Neutron momentum is determined by TOF method
- require at least 1 track in CDC to reconstruct the reaction vertex → flight length

Forward Neutral Particles [Cont'd]

Preliminary Result 1: ³He(K⁻,n)

Preliminary Result 1: ³He(K⁻,n)

Semi-inclusive ³He(K⁻,n)

- Global shape is roughly understood by known processes.
- Tail component is very interesting.
 - Careful analysis is in progress
 - Can be reproduced by known processes?

Number of **n** in the NC & Λ**p** in the CDS events is less than 10
 We need more beam-time!

Preliminary Result 3: ³He(K⁻,Λpn)

- Some hints of 3N-abs/K⁻pp???
- Further analysis is ongoing.
 - Opening angle of Λp ,
 - Momentum/Angular dist., etc.

Number of **n** in the NC & Λ**p** in the CDS events is less than 10
 We need more beam-time¹/₃₂

Summary

- We have performed 1st physics run of the J-PARC
 E15 experiment to search for the K⁻pp bound-state
 - ~4*10⁹ kaons were incident on ³He
 - ³He(K⁻,n) : ~1.4*10⁵ events
 - ${}^{3}\text{He}(K^{-},\Lambda p)$: ~3,000 events with the CDS
 - 3 He(K⁻, Λ pn) : <10 events with the CDS & the NC
- Further analyses will be reported soon
 - Finalization of the ³He(K⁻,n) spectrum
 - Detailed analysis of exclusive Λpn events
 - Comparison of ³He(K⁻,n/p) spectra

The J-PARC E15 Collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j\$}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •

(b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada ᡟ

(c) Department of Physics, Seoul National University, Seoul, 151–742, South Korea ቚ

(d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy

(e) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania 📕

(f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳

(g) INFN Sezione di Torino, Torino, Italy

(h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy

(i) Department of Physics, Osaka University, Osaka, 560–0043, Japan 🔸

(j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan 🔸

(k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan ●

(I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan •

(m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152–8551, Japan •

(n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan 🔹

(o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ●

(p) Technische Universität München, D-85748, Garching, Germany 💻

(q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •

(r) Department of Physics, Tohoku University, Sendai, 980–8578, Japan •

(s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳

(t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139–706, South Korea 💌

(*) Spokesperson

(\$) Co-Spokesperson