

Search for a ppK⁻ bound state with FOPI

Strangeness program of FOPI

Detector

Results on bound kaonic nuclear states (incl. ppK-)

Results on hypernuclei

Summary

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Strangeness program of FOPI

Data from elementary reactions

K⁰, **A production and phase space distributions in** π^- + C, Al, Cu, Sn, Pb @ 1.15 GeV/c, (S273, 2004) **K**⁰, **K**⁺, **K**⁻, **•**, **A production in** π^- + LH₂, C, Pb @ 1.7 GeV/c, (S339, 2011) **Kaonic bound state ppK**⁻ in p + p @ 3 GeV, 80M (S349, 2009)

Systematics of strangeness data from heavy-ion reactions

K^{0} , K^{+} , K^{-} , φ, K^{*} , Λ, Σ*(1385)		85) product	production and flow	
System	beam energy	events	(proposal, year)	
Ni + Ni	1.93 AGeV,	100M	(S261, 2003)	
AI + AI	1.91 AGeV,	200M	(S297, 2005)	
Ni + Ni	1.91 AGeV,	80M (S3	25, 2008)	
Ni + Pb	1.91 AGeV,	100M (S3	38, 2009)	
Ru+ Ru	1.7 AGeV,	210M (S3	38, 2009)	

Search for

Kaonic bound states Hypernuclei in heavy-ion reactions

Heavy-ion collisions @ SIS

Threshold energy in a fixed-target experiment

 $NN \rightarrow K^{+}YN \qquad E_{tr} = 1.5 GeV$ $NN \rightarrow K^{+}K^{-}NN \qquad E_{tr} = 2.5 GeV$

Central Au+Au @ 2 AGeV

Density a few times po

Strangeness produced in the early stage

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

In-medium modifications

Experimental evidence

Uniwersytet Warszawski, FOPI Collaboration

SAIWERS.

II Int. Symposum on moore made Krakow, 22-24.09.2013

ate with FOPI

0.5

y⁽⁰⁾

Yields ratios

Surprisingly good agreement - with thermus

- and UrQMD

Few discrepancies

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Problems and questions

Details of flow in peripheral collisions

Rapidity and mt distributions

K- from Φ

Elementary cross-secions

Slopes of m_t spectra at midrapidity

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Beams C, ... , Au, p, π Energies 100 AMeV – 3,5 AGeV

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

0 -2

FOPI detector

General purpose Complete azimuthal symmetry, large acceptance Helitron+Wall : 1.2º - 30º CDC+Barrel : ⊖_{lab}>35°

B =0.6 T

34°

Fixed target experiment (variable target position)

Heavy-ions and elementary

26°

y⁽⁰⁾

1

Direct detection of charged particles fragments, pions (95% efficiency)

K.Wisniewski Uniwersytet Warszawski, FOPI Collaboration

Univ. of Heidelberg, Germany

Univ. of Warsaw, Poland

RBI Zagreb, Croatia

0

-1

Resistive Plate Chambers - TOF Barrel

Time resolution from fast pion tracks (p_{lab}>0.5GeV/c)

First RPC-TOF system in the world Prototyping the TOF system of CBM @ FAIR

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

STIWER.

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013 Search for a ppK- bound state with FOPI

~ 65 ps

σ_{RPC}

Identification of charged particles

SAIWERS

Kaons up to 1 GeV/c – CDC-TOF essential

Mid-rapidity not fully covered

Extended thanks to the RPC Barrel

K.Wisiiiewski Uniwersytet Warszawski,FOPI Collaboration II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Identification of particles by decay

Background reconstructed by event mixing

Topological cuts decisive for the amount of background (S/B ~ 10 no problem)

Mass resolution (in the case of weak decay) $\sigma>4$ MeV (depending on momenta of daughters, intrinsic width not extracted)

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Only invariant mass

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Selection criteria

mass of π , p, Λ p_t of π , p, Λ h_{mult} of π , p $\sigma(d_{xy})$ of π,p d_0 of π , p, Λ z difference of p and π phi difference of p and π and of Λ and p d_{t} of Λ

 $0.08 < m_{\pi} < 0.7, 0.7 < m_{p} < 1.5, 1.16 > m_{\Lambda} > 1.26$ $p_t(\pi) > 0.09, p_t(p) > 0.30, p_t(\Lambda) > 0.30,$ h_{mult}(p)>25, h_{mult}(p)>30 $\sigma(d_{xv})_{\pi} < 0.1, \sigma(d_{xv})_{p} < 0.05$ 1.9<d₀(p), 0.6<d₀(p), d₀(Λ)<0.5 $abs(z_{o}-z_{\pi}) < 20$ abs(phi_p-phi_s)<2 $abs(phi_{2p}-z_{\Lambda})>30$ $4 < d_{t}(\Lambda) < 30$

Removal of crossing tracks Background reconstructed by event mixing Events rotated in order to align reaction planes

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

ppK- in Al+Al and Ni+Ni @ 1.9 AGeV

Krakow, 22-24.09.2013

Binding energy and width

Excess found

About 100 MeV too much bound

Not a ppK- cluster ? Could be a final-state interaction

200

180

160

EVENTS 140 120

NUMBER 80

\$ 100

60

40

20

2050

Uniwersytet Warszawski, FOPI Collaboration

T.H. Tan, PRL 23 (1969) 395 MIANUW, 22-24.03.2013

New LV2 trigger Start detector Liquid hydrogen target

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration II Int. Symposuim on Mesic Nucle Krakow, 22-24.09.2013 ound state

Analysis in progress

Exclusive measurement

- Worse momentum resolution in the forward direction
- A reconstruction still not satisfactory
- Missing mass (will be) available for the first time

 K^+

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013 Search for a ppK- bound state with FOPI

HELITRON

nppK- -> d∧ in Ni+Ni @ 1.9 AGeV

Excess visible

Not at the threshold

Not due to the cusp effect

Binding energy & width compatible with predictions

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

STIWERS PAR

.. compared to other experiments

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

The first observation of the decay of a hypernucleus *M. Danysz and J. Pniewski, Phil. Mag.* 44 (1953) 348

Profesor Marian Danysz (1909-1983 Profesor Jerzy Priewski (1913 - 1989

> II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Production mechanism ...

... favours AA collisions

 $^{12}C + ^{12}C@2 \ AGeV$

	$\frac{4}{\Lambda}H$	$^4_{\Lambda} He$	${}^5_{\Lambda}He$
total yield (μb)	2.2	4	1.4
pionic contribution (μb)	0.3	0.2	0.03

T. Gaitanos et al. / Physics Letters B 675 (2009) 297 (GiBUU+SMM)

No experimental verification

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Certain disadvantages

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Advantages

Large momentum transfer and recoil (more) precise lifetime measurement small detectors in fixed-target experiments

Rare fragments population of n/p-rich isotopes

Multi-strange objects production of XX∧-Hypernuclei

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

JINR Results

-	-
FOPI	9

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

STIWERS PA

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Second generation experiments

T.Armstrong et al. PRC 70 024902 (2004)

Au + Pt @11.5AGeV

10¹⁰ central events with second level trigger on a heavy fragment

$${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$$

Statistical significance 2σ

Precision experiment ? not fully dedicated to the hyper-physics

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Anti-Hyper-Nuclei

K.Wisniewski Uniwersytet Warszawski, FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Uniwersytet Warszawski, FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Selection criteria

Strategy : take everything and clean-up

Essential topological cuts: distance of closest approach (d0) decay length (r_s) and direction (b, $\phi_{decay} - \phi_{hypertriton}$) Large momentum and Lorentz-factor help

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

STIMEN

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

$_{A}^{3}$ H -> 3 He+ π^{-} in Ni+Ni @ 1.9 AGeV

6*10 ⁷ events, 50% central

Topological cuts

Background reconstructed by mixed-event method: centrality classes alignment of the reaction planes

Removal of close/intersecting tracks

Detection rate: 10⁻⁶/event

S/B ~ 10^{-1} , Significance ~ 6

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

0 / 3. 0 //1 3. u /

Decay distribution

Efficiency corrections from MC

Lifetime agrees with the world data (precision comparable with other measurements)

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Phase-space population

Uniwersytet Warszawski, FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Coalescence does not work very well

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Other Correlations I

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

3body-decay Reconstruction

Test case: $K^+ \to \pi^- + \pi^+ + \pi^+$ (5.6%)

Application: ${}_{\Lambda}t \rightarrow \pi^- + p + d$

Background reconstruction much more tricky

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

(MeV)

0.2

0.3

E^{cm}_{kin}(GeV)

0.4

30

0.1

, ¥× ×

0.04

0.02

0

0

Strangeness in AA collisions studied extensively with FOPI

Evidence for in-medium modifications of K mesons

Kaonic nuclear states

and hipernuclei

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Future Activity in CaveB of GSI

Installation and operation of the PANDA prototype GEM-TPC with a supreme spatial resolution and forward geometrical acceptance

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

STIWERS.

II Int. Symposuim on Mesic NL.... Krakow, 22-24.09.2013

Double strangeness production

STIMERS

Production of $\Xi^$ in π induced reactions at 2.5 GeV/c

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013

Last Slide

FOPI was turned down end of 2012

K.Wisniewski Uniwersytet Warszawski,FOPI Collaboration

II Int. Symposuim on Mesic Nuclei Krakow, 22-24.09.2013