HADES

Studying in-medium hadron properties in

baryonic matter with HADES

P. Salabura Jagiellonian University for the HADES collaboration

Strangeness in NN and nuclear matter: • $\Lambda(1405)$ production and search for ppK⁻ in pp reactions •kaons (K0), $\Xi(1321)$, ϕ production in A+A

 ρ/ω mesons in NN and p+A

High Acceptance Di-Electron Spectrometer

- Beams from SIS18: protons, nuclei , pions
 2.0 GeV
 3.2 GeV
- Spectrometer with high invariant mass resolution 2% at ρ/ω
- Versatile detector for rear probes :
- dielectrons (e+,e-)
- strangeness: Λ , $K^{\pm,0}$, $\Sigma(1385)$, Ξ^{-} , ϕ

Kaons in nuclear matter

700.0 TM1 600.0 K^{\dagger} Kaon energy $\omega_{\rm K}$ [MeV] 500.0 400.0 K 300.0 RMF ChPT (Σ =270 MeV) 200.0 ChPT (Σ =450 MeV) ChPT (D=0) 100.0 coupled channel 0.0 0.0 1.0 2.0 3.0 Density ρ/ρ_0 G.E Brown et.al NPA 567 (1994) 937, T. Waas, e al. PLB 379 (1996) 34 J. Schaffner-Bielich, et al.. NPA 625 (1997),...

K⁰ / K+:

K+/K⁰ considered as good quasiparticle \checkmark at SIS18 (p_K <1 GeV/c) $\lambda_{K+} \cong 5$ fm (weak absorption) K⁻ in medium: more complicated \rightarrow spectral function

✓ Λ (1405) physics : entry to K⁻ in medium properties , kaonic clusters ppK⁻ ...,

Λ (1405) doorway into bound K⁻ N

HADES

• pole shift? intereference with non. res $\Sigma \pi$ lower pole stronger, $\Lambda(1405)$ -N FSI?

Search for ppK⁻ bound state in p+p @ 3.5 GeV

PWA (Bonn-Gatchina) –(one example) N*(1650) +/N*(1710) +/N*(1720) +/N*(1875) + /N*(1900)++non resonant

aim: global analysis of HADES/DISTO/COSY-TOF data

Case of A+A @ 1-2AGeV

S.Vogel et al. (URQMD) arXiv:0710.4463v2 E_{lab}=2 AGeV E_{lab}=11 AGeV E_{lab}=30 AGeV 5 Au+Au 4 ρв/ ρο 2 0 0 2 10 12 14 16 18 20 4 6 8 t (fm) Rapp & Wambach Adv. Nucl. Phys. 25 (2000) 2.00 -1.50g π 1.00 0.50 $0.00 \cdot$ 25 50 75 100 125 150 175 200 0 T (MeV)

1-2 AGeV : moderate densities but long system life time **Baryonic matter**:

• ρ/ρ_N = 1-3, T< 80 MeV, τ ~12-14 fm/c

nucleons, baryonic resonances (~30%) Δ_{33} mesons(π^0) ~10% "resonance (Δ , N^{*}) matter"

- Sub-threshold production of $(\omega, \phi, K^-K+, \Xi)$:
- confined to high density zone
- Multi-step processes ~ Apart $\alpha > 1$ ex: $\widehat{\epsilon}$ N+N->N Δ , Δ +N \rightarrow N +N + ϕ ¹⁰

N+N>NK Λ , $\pi\Lambda \rightarrow \overline{K}N$

$$P_{\rho/\omega \rightarrow e+e-} \cong 10^{-6}$$
 !

HADE\$

K⁰_s and K⁺ production in A+A

HADES

Kaons are repealed from nuclear matter:

- flow out of plane : KAOS, FOPI
- reduced yield at low p_t (p): FOPI, ANKE
- Results for K⁻ are not yet conclusive...

...but usually assumed m^{*} = m(1- $\alpha \rho_B / \rho_0$) far too simple...

ϕ and ϕ/ω ratio in Ar + KCl

 $R_{\phi/\omega}$ ^{A+A} >> $R_{\phi/\omega}$ in NN and πN reactions د 10^{−1} THERMUS Ar+KCI (HADES) $\phi \rightarrow \mathbf{K}^{+}\mathbf{K}^{-} \\ \omega \rightarrow \mathbf{e}^{+}\mathbf{e}^{-}$ **π+N** 10⁻² N+N w.r.t N-N 10⁻³ threshold -0.3 -0.2 -0.1 0.2 -0.4 0 $\in = E_{c.m.} - E_{thr}(\phi)$ [GeV] $OZI: \phi/\omega = \tan^2 \delta \cong 4.2 \cdot 10^{-3}$

Double strange Ξ^{-} (1321) in Ar+KCI

data: PRL 103 (2009) 132310

first measurement 640 MeV below NN threshold !

what is the production process? strangeness exchange $K^-Y \rightarrow \pi \Xi^-$?

✓ Ξ production significantly larger then
 transport & statistical hadronization models

Statistical hadronization model at work

HADES

yield

ρ -meson in vacumm and nuclear matter ADES

e+e- annihilation into 2 pions: charged pion form factor

 ρ meson dominance

1967: Sakurai Vector Meson Dominance

$\pi^+ \pi^-$ annihilation into e+e- in hot nuclear matter (HI collisions)

 ρ meson gets very broad !

Melting of the meson in nuclear matter

Vector mesons in medium & ChS restoration..

G.E. Brown / M. Rho: Scaling of masses with χ -condensate (PRL 1989, 1991)

$$m^* \approx m \left[\left\langle \overline{q} q^* \right\rangle / \left\langle \overline{q} q \right\rangle \right]^{t}$$

T. Hatsuda /S. Lee: QCD sum rules PRC46(1992)R34

$$m^* = m(1-\alpha\rho^*/\rho)$$

hadronic many body interactionsρ spectral functions..

 $\rho\text{-}$ meson at 2 x ρ_{N}

HADE\$

p+p vs p+Nb @ 3.5 GeV

- large acceptance at small M_{e+e-} and p (<1 GeV/c) (first measurement at low p !)
- p+p cockail : based on known sources fixed to data $\pi^0 / \eta / \omega / \rho$

underestimeted e+e- yield below VM pole \rightarrow missing component? -> higher resonances (Δ , N^{*})

e+e- excess in p+Nb

e clear excess in p+A below VM pole & absorption of ω (observed also in γ +A exp)

secondary reactions : $\pi + N \rightarrow N^*$ (1520), N*(1720), Δ (1620) $\rightarrow N\rho \rightarrow Ne+e-$ (i.e transport models) or/and in medium ρ modification ?

first R->pe+e- decay process must be understood !

Baryon resonance structure

HADES

 $2M_N$

 q^2

0

e+e- from Baryon Resonances in vacuum ADES

• Resonance contribution estimated from $pp\pi^0$ and $pn\pi^+$ channels

Resonances (R) with Mass up to 2 GeV included

calculations with point-like RN γ^* does not describe data

eTFF(Me⁺e-) dependence very important -> Vector Meson contribution !

pion beams at SIS18: HADES in 2014

differential distributions are even more scarse (or missing)

Badly need for hadron physics to improve our undertsanding of baryon resonance properties!

For physics discussed in this talk:

• π + π - production : coupling of ρ to resonance

old "Manley" analysis PRD30,(1984) 904 1.3 < \sqrt{s} <2 was based on 240 000 events (differential; distributions not avialable)

Full excitation function can be measured with HADES within 2 weeks!

+ many others like : $\pi \ {}^{-}p \rightarrow \pi \ {}^{-}p, \ \pi \ {}^{-}p \rightarrow K^{0} \Lambda, \ K^{+} \Sigma^{-}$

needed for PWA and coupled channel calculations

• e+e- never measured

Resonance Dalitz decays $R \rightarrow Ne+e-$ (electromagnetic Transition Form Factors)

- meson production of nucleus : K^{\pm} , $\rho,\,\omega,\,\phi$

Radiation from baryonic matter

1)

1)

HADE\$

CC compared to NN reference.

HADES

NN and C+C normalized to the individual $N(\pi^0)$

C+C data (1 and 2 AGeV !) reproduced (within 20%) by superposition of NN interactions (reference) – no room (within error bars) for in-medium effects

e+e- pairs from Ar+KCI @ 1.756

 $\tau_{\text{firellball}} \sim \text{8-10 fm/c} \ > \tau_{\Delta \, \sim} \ \text{1.3 fm/c} \rightarrow \text{N}_{\text{e+e}} \sim \tau_{\text{e+e-}} \text{ Volume}$

Summary:

- > new K_{S}^{0} data support repulsive KN in-medium potential ; $\Lambda(1405)$ is crucial for antykaon properties in nuclear matter -> pp data waits for comparison with microscopic calculations
- > enhanced ϕ production w.r.t. NN/ π N data
- > enhanced (above SHM predictions) production of double strange $\Xi(1321)$
- > in-medium effects on ρ (p+A) are not clear yet :

determination of ρ -meson shape in N-N collisions ("vacumm") is far from trivial and requires better understanding of Δ/N^* - ρ couplings \rightarrow el.Transition Form Factors , work is in progress Properties of baryon resonances in nuclear matter are strongly related to the in medium ρ properties

pion beam programme essential for understanding of vector meson in-medium properties & kaon production

The Collaboration

HADES

N+N reference (II): e+e- in n+p

calculations: R. Shyam and U. Mosel *Phys. Rev. C* 82:062201, 2010 *data*: HADES

Beam Kinetic Energy (GeV)

• η production – fixed by COSY, WASA data

bremsstrahlung pn→pne+e- (non resonant), why it is so

much different from pp?

R. Shyam and U. Mosel Phys. Rev. C 82:062201, 2010

charge pion exchange & pion eFormFactor

for example:

Resonance reconstruction

strangeness

HADES

Ar + KCI @ 1.75 AGeV: excellent rec. capabilities

Vector mesons in cold matter- experiments

Strangness production in ArKcl

Boltzmann fit:
$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy_{cm}} = C(y_{cm}) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y_{cm})}\right).$$

 \rightarrow inverse slopes $T_B(y_{cm})$