Search for \$\$\phi\$ meson-nuclear bound state

Hiroaki Ohnishi RIKEN

Introduction

• ϕ meson :

• Vector meson, $J^{PC} = 1^{-1}$

the lightest bound state of hidden strangeness (ss)

narrow width = 4.43 MeV/c², Long life time = 45 fm/c

 Interaction between φ-nucleon
 φ-N interaction could be attractive.
 → QCD van der waals interaction (multi-gluon exchange)

Progress of Theoretical Physics, Vol. 98, No. 3, September 1997

QCD Sum Rules for ρ , ω , ϕ Meson-Nucleon Scattering Lengths and the Mass Shifts in Nuclear Medium

Yuji KOIKE and Arata HAYASHIGAKI

Graduate School of Science and Technology, Niigata University Niigata 950-21

(Received April 14, 1997)

results

$$a_{
ho} = -0.47 \pm 0.05 \text{ fm},$$

 $a_{\omega} = -0.41 \pm 0.05 \text{ fm},$
 $a_{\phi} = -0.15 \pm 0.02 \text{ fm},$

Expected mass shift of $\phi \sim 1-2\%$ (@ $\rho = \rho_0$) = 10 MeV to 20 MeV

-	and the second s							
Theoretical prediction?								
a		Progress of Theoretical Physics, Vol. 124, No. 1, July 2010						
	Search for th	Formation of ϕ Mesic Nuclei						
	Department of Physics and the Tria	Junko YAMAGATA-SEKIHARA, ^{1,*)} Daniel CABRERA, ² Manuel J. VICENTE VAGand Satoru HIRENZAKI ⁴						
	The subthreshold photo search for the ϕ -N boto detailed Monte C - L for subthreshold p DOI: 10.1103/	toproduction of ϕ mesons from heavy nuclear targets has been suggested as a candidate bund state, a quantum chromodynamics molecular state. In this Brief Report, we present <u>The televenetered of a Hiller of the televenetered of tel</u>						
¹ Laboratory for Nuclear Science and ² Physi We show that the QCI inside a nucleus to form in the case of subthresh and such an experiment DOI: 10.1103/PhysRevC.63.022201		Available online at www.sciencedirect.com ScienceDirect ELSEVIER Nuclear Physics A 835 (2010) 406–409 www.elsevier.com/locate/nuclphysa						
		Formation of Slow Heavy Mesons in Nuclei Satoru Hirenzaki ^a , Junko Yamagata-Sekihara ^b ^a Department of Physics, Nara Women's University, Nara 630-8506, Japan. ^b Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Apartado 22085, 46071 Valencia, Spain						

Theoretical prediction?

Progress of Theoretical Physics, Vol. 124, No. 1, July 2010

Formation of ϕ Mesic Nuclei

Junko YAMAGATA-SEKIHARA,^{1,*)} Daniel CABRERA,² Manuel J. VICENTE VACAS³ and Satoru HIRENZAKI⁴

No clear structure.

Table 3. Bound state results (in MeV) for the ϕ NN and $\phi\phi$ NN systems. The number in parentheses corresponds to the root mean square radius (in fm).

		Singlet			Triplet	
System	EAA	SEM	Other	EAA	SEM	Other
ϕ NN	22.88	23.609	21.8 [5]	39.364	39.842	37.93 [5]
	(1.0844)			(0.8345)		
$\phi\phi NN$	75.473			124.590		
	(0.4671)			(0.4239)		

♦NN bound state are expected : BE~20-30 MeV

IOP PUBLISHING

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS J. Phys. G: Nucl. Part. Phys. 37 (2010) 085109 (10pp)

doi:10.1088/0954-3899/37/8/085109

The ϕ -NN and $\phi\phi$ -NN mesic nuclear systems

S A Sofianos¹, G J Rampho¹, M Braun^{1,3} and R M Adam²

¹ Department of Physics, University of South Africa, PO Box 392, Pretoria 0003, South Africa ² South African Nuclear Energy Corporation, PO Box 582, Pretoria 0001, South Africa

ϕ meson in nucleus - experiment -

About Decay Width

ø meson in normal nuclear media

Transparency ratio, $T_A = \overline{\sigma_{\gamma A-\phi X}} / \overline{A(\sigma_{\gamma p-\phi X})}$,

• Data : PLB 608(2005)215 $\gamma A \rightarrow \phi X$: Extracted $\sigma_{\phi N} = 30 \text{ mb}$

 Analysis : NPA 765(2006)188
 σ_{φN} expected (Theo.) ~10 mb

 discrepancy between σ_{φN}
 measured and expected
 is explained by width broadening
 of φ in nuclear media by factor 16!
 (Γ_{in nucleus} ~70 MeV)

 $\sigma_{\phi N} \sim 10 \text{ mb} : \lambda_{\text{interaction}} = 7.0 \text{ fm}$ $\sigma_{\phi N} \sim 20 \text{ mb} : \lambda_{\text{interaction}} = 3.5 \text{ fm}_{0}$

ϕ meson with deuteron

Contents lists available at ScienceDirect

Physics Letters B

Contents lists available at ScienceDirect

www.elsevier.com/locate/physlet/

Physics Letters B

PHYSICS LETTERS B

Measurement of the incoherent $\gamma d \rightarrow \phi pn$ photoproduction near threshold

LEPS Collaboration

W.C. Chang^{a,*}, M. Miyabe^b, T. Nakano^c, D.S. Ahn^{c,d}, J.K. Ahn^d, H. Akimune^e, Y. Asano^f, S. Daté^g, H. Ejiri^c, H. Fujimura^h, M. Fujiwara^{c,i}, S. Fukui^j, S. Hasegawa^c, K. Hicks^k, K. Horie^c, T. Hotta^c, K. Imai^b, T. Ishikawa^h, T. Iwata¹, Y. Kato^c, H. Kawai^m, K. Kino^c, H. Kohri^c, N. Kumagai^g, S. Makinoⁿ, T. Matsuda^o, T. Matsumura^p, N. Matsuoka^c, T. Mibe^c, M. Miyachi^q, N. Muramatsu^{c,i}, M. Niiyama^b, M. Nomachi^r, Y. Ohashi^g, H. Ohkuma^g, T. Ooba^m, D.S. Oshuev^a, C. Rangacharyulu^s, A. Sakaguchi^r, P.M. Shagin^t, Y. Shiino^m, H. Shimizu^h, Y. Sugaya^r, M. Sumihama^c, Y. Toi^o, H. Toyokawa^g, M. Uchida^u, A. Wakai^v, C.W. Wang^a, S.C. Wang^a, K. Yonehara^e, T. Yorita^{c,g}, M. Yoshimura^w, M. Yosoi^c, R.G.T. Zegers^x

The extraction of ϕ -N total cross section from $d(\gamma, pK^+K^-)n$

CLAS Collaboration

X. Qian^{a,*}, W. Chen^a, H. Gao^a, K. Hicks^b, K. Kramer^a, J.M. Laget^{c,d}, T. Mibe^b, S. Stepanyan^d, D.J. Tedeschi^e, W. Xu^f, K.P. Adhikari^{af}, M. Amaryan^{af}, M. Anghinolfi^w, H. Baghdasaryan^{am}, J. Ball^c, M. Battaglieri^w, V. Batourine^d, I. Bedlinskiy^z, M. Bellis^k, A.S. Biselli^{p,ag}, C. Bookwalter^r, D. Branford^o, W.J. Briscoe^s, W.K. Brooks^{al,d}, V.D. Burkert^d, S.L. Careccia^{af}, D.S. Carman^d, P.L. Cole^{u,d}, P. Collins^h, V. Crede^r, A. D'Angelo^{x,ai}, A. Daniel^b, N. Dashyan^{ao}, R. De Vita^w, E. De Sanctis^v, A. Deur^d, B. Dey^k, S. Dhamija^q, R. Dickson^k, C. Djalali^e, G.E. Dodge^{af}, D. Doughty^{m,d}, R. Dupre^g, P. Eugenio^r, G. Fedotov^{aj}, S. Foran^t, P. Forsch^{ah,1}, A. Eradi^y, M.Y. Cabridwan^g, C.B. Cilfeula^{ah}, K.L. Giowanetti^{aa}, F.Y. Gired^{5,2}

Experiment : $\gamma d \rightarrow \phi X$ Extracted ϕN cross section $\sigma_{\phi N} = 20 \text{ mb}$ Again $\sigma_{\phi N}$ Expected, $\sigma_{\phi N} = 11 \text{ mb (upper limit)}$ How to explain this discrepancy? Again width broadening of ϕ meson in nuclear matter even on deuteron?

Why absorption of ϕ takes place on deuteron? Is this only a case with gamma induced experiment?

One more

 Momentum dependence of transparency ratio by COSY-ANKE

Phys. Rev. C 85, 035206 (2012) [8 pages]

Momentum dependence of the φ -meson nuclea

Abstract

References Citing Articles (1)

Download: PDF (396 kB) Buy this article Export: BibTeX or EndNote (RIS)

Hide All Authors/Affiliations

M. Hartmann^{1,*}, Yu. T. Kiselev^{2,†}, A. Polyanskiy^{1,2}, E. Ya. Paryev³, M. Büscher¹, D. Chiladze^{1,4}, S. Dyr Keshelashvili⁹, V. Koptev^{7,‡}, B. Lorentz¹, Y. Maeda¹⁰, V. K. Magas¹¹, S. Merzliakov^{1,6}, S. Mikirtytchiants Serdyuk^{1,6}, A. Sibirtsev⁵, V. Y. Sinitsyna¹⁴, H. J. Stein¹, H. Ströher¹, S. Trusov^{8,15}, Yu. Valdau^{1,16}, C. W ¹Institut für Kernphysik and Jülich Centre for Hadron Physics, Forschungszentrum Jülich, D-52425 Jül

Width increasing ? as a function of momentum less absorption with low momentum ϕ meson ?

At High Temperature

New experiment needed to answer the question about ϕ meson in nucleus Two experiments are proposed at J-PARC 1) Study on meson mass modification in nuclei using primary proton beam at J-PARC \rightarrow detail study of ϕ ->e+e- in nucleus (J-PARC E16 experiment) **2)** Search for ϕ meson bound state his taik!

Key point to produce ϕ meson bound state

• What we need ?

LEAR / JETSET

Background processes

List of background

Process	σ_{Total}
	(mb)
signal	$23. \times 10^{-3}$
$\pi^+\pi^0\pi^-$	33.
$2\pi^{+}2\pi^{-}$	47.
$\pi^{+}2\pi^{0}\pi^{-}$	14.
$2\pi^{+}\pi^{0}2\pi^{-}$	224.
$2\pi^{+}2\pi^{0}2\pi^{-}$	125.
$3\pi^+3\pi^-$	18.
$2\pi^{+}3\pi^{0}2\pi^{-}$	86.
$2\pi^{+}4\pi^{0}2\pi^{-}$	22.

Event selection like 3 strangeness, i.e. 3 Kaons in a events reduce background significantly

Anti-proton beam at J-PARC

20

J-PARC secondary beam line Low momentum p beam available

Study of in medium mass modification for the ϕ meson using ϕ meson bound states in nucleus

J-PARC E29 experiment

P.B"uhler¹, C. Curceanu², C. Guaraldo², O.Hartmann¹, K.Hicks³, M.Iwasaki^{4,5}, T.Ishiwatari¹, P.Kienle⁶, J.Marton¹, R.Muto⁷, M.Maruki⁷, M.Niiyama⁴, H.Noumi⁸, H.Ohnishi⁴, S.Okada², A.Romero Vidal², A.Sakaguchi⁹, F. Sakuma⁴ S. Sawada⁷, D. Sirghi², F. Sirghi², K. Suzuki¹, D.J. Tedeschi¹⁰, K.Tsukada⁴, O. Vazquez Doce², E. Widmann⁴, S. Yokkaichi⁴ and J. Zmeskal¹

29 members from 10 institute

What we need?

High resolution forward Kaon spectrometer

Large angle charged particle Spectrometer for decay product $\phi N \rightarrow K\Lambda$, for example.

Conceptual design of the detector Large solid angle charged particle spectrometer (with large gap dipole magnet)

Using antiproton beam with 1.0 – 1.1 GeV/c

Large acceptance for forward going ϕ meson (for missing mass analysis)

Large solid angle for the decay particles, K^+ / Λ , from ϕ mesic nucleus ²⁴

Detector simulation using GEANT4 is in progress

Expected Signal + background

 Expected missing mass distribution with background (On Carbon target) :

270 kW, one month

ϕ meson reconstructed with Λ

However, problems? on double ϕ meson production

Double ϕ meson production

• Recently, $\omega \phi$ bound system has been observed? at BESII (PRL96(2006)162002)

Moreover $\gamma\gamma \rightarrow \phi\phi$ has been measured at Belle with high statistics (PRL108(2012)232001).

30

1st phase for E29

We are now planing to perform 1st phase experiment using spectrometer at K1.8BR beamline

- Maximum momentum for anti-proton at J-PARC/K1.8BR → 1.1 GeV/c
- Unfortunately, cross section of double φ meson production only available from p monemtum
 = 1.2 GeV/c and higher

• Thus, we are planed to perform the experiment to confirm the cross section of $pp \rightarrow \phi \phi$ with p momentum lower than 1.2 GeV/c (no data available) on hydrogen target

Also planed to take data with deuteron (or light nuclei)

Idea for phase-1 experiment

- Using E15 spectrometer
- Large acceptance charged particle spectrometer surrounding target (CDS).
- Calculate invariant mass of K+K- and missing mass, then we can identify double φ production

Good enough to investigate elementary process !

Idea for phase-1 experiment

Signal

Angular acceptance

Plane for next years

- We will ask to J-PARC PAC (probably next January) for approval of E29 1st phase experiment
 - Perform the experiment at K1.8BR
 - Using Detector ready exist
 → Problem might be a beam time availability

 Once we finish to taking data and confirm the cross section of double φ production we will go forward to perform full
 experiment to search for φ meson bound state

Summary

The project to searching for ϕ meson bound state has been proposed to J-PARC and now we got stage-1 approval (E29)

The most promising elementary process for the ϕ mesic nucleus production will be $pp \rightarrow \phi \phi$ channel

Preparation for the E29 phase-1 is in progress