Search for ω -mesic states Experimental constraints on the ω -nucleus optical potential

Stefan Friedrich

for the CBELSA/TAPS-Collaboration

II. International Symposium on Mesic Nuclei

Cracow, September 22nd-25th 2013

Content

- Motivation
- Analysis
- Results
- Comparison with Theory
- Summary

Motivation

 $E_{\omega} = m_{\omega} - 100 \text{ MeV}$

2.0

E [GeV]

1.5

2.5

3.0

3.5

4.0

200

100

0

0

Lab

= 0 deg.

0.5

1.0

- Is there an attractive potential between the nucleus and the ω -meson? ۲
- 1st step: Production of ω -meson 2^{nd} step: Capture of ω -meson ٦ Identifying bound states \rightarrow select low momentum ω ۲ E_v = 2750 MeV • $\gamma + A \rightarrow \omega \otimes_{(Z-1)} (A-1) + p$ **Recoilless production: Request for forward going proton** M. Kaskulov et al. PRC 75 (2007) 064616 800 $\theta_{\text{D}}^{\text{Lab}} = 10.5 \text{ deg.}$ momentum transfer [MeV/c] 700 р 600 500 $E_{\omega} = m_{\omega}$ 400 $E_{\omega} = m_{\omega} - 50 \text{ MeV}$ 300

740;

240 MeV/c

ELSA accelerator @ Bonn

ELSA accelerator @ Bonn

Experimental setup

Signatures for bound states

- Would potential between nucleus and ω-meson be attractive or repulsive?
 Would this attractive potential be sufficiently deep to form a bound mesonnucleus system?
 - Kinetic energy spectrum would be changed!
 - Two options:
 - Missing mass spectroscopy (inclusive measurement): measuring momentum of forward going proton
 - Decay spectroscopy (semi-exclusive measurement): measuring decay of ω-bound state in coinc. with forward going proton

Nagahiro, Jido, Hirenzaki, Nucl. Phys. A 761 (2005), 92

Analysis: Background + Signal

Analysis: Background determination

- Background contribution is derived from same dataset!
- $\pi^0\pi^0/\pi^0\eta \rightarrow 4 \gamma \text{ events}$
- 1 neutral omitted, analysed in same way
- All combinations taken into account
- Background gradually scaled in momentum bins separately 0, 300, 600, 900 MeV/c

Analysis: Signal spectra (counts)

Cross section determination: Acceptance

• $\pi^0 \gamma$ pair in coincidence with proton in TAPS (1° < θ_n < 11°)

• Pixelwise acceptance correction applied!

 GEANT3 detector simulation to determine acceptance of the experimental setup

• $400 < M_{\pi 0 \gamma} < 1200 \text{ MeV/c}^2$

- Proton and ω correlated in Θ/Φ
- Fermi motion included (Carbon!)
- Detector features implemented

Contour lines: increments by 10%

Systematic uncertainties

Cross section: $\sigma = N_{event} / (\epsilon \cdot n_{target} \cdot N_{\gamma} \cdot BR)$

Fits	10-15%
Acceptance	≤ 10%
Photon flux	5-10%
Photon shadowing	≈5%
Total	≈20%

Systematic errors added quadratically

$$\sigma_{total}^{syst} = \sqrt{(\Sigma_i \sigma_i^2)}$$

Cross sections: Carbon

Cross sections: Comparison

Theoretical predictions (I)

Theoretical predictions (II)

Theoretical predictions (III)

Comparison with experiment

• Yield due to large in-medium width of ω ?

Comparison with GiBUU

Summary

- No significant structure at negative energies observed
- Cross section in bound state region comparable to theoretical predictions
- Comparison of data and theoretical calculations by Nagahiro et al. show that the real part of the ω-nucleus potential can be constrained to:
- $V_{0}(\rho = \rho_{0}) \approx -20 \pm 25$ (stat) ± 10 (syst) MeV
- Imaginary part of the ω -nucleus potential:

 $\Gamma(\rho=\rho_0) \approx 140 \text{ MeV} > |V_0| > \text{binding energy}$

• Conclusion:

Unfortunately ω not a good case to search for bound states

Thank you for your attention!

Backup

Momentum distribution

