2D Thermoluminescence Dosimetry for scanning ion beam

Jan Gajewski

Institute of Nuclear Physics, Kraków, Poland German Cancer Research Center (DKFZ), Heidelberg, Germany Heidelberg Ion-Beam Therapy Center (HIT)

Supervisor: Prof. Dr hab. Paweł Olko

Symposium on applied nuclear physics and innovative technologies 4th June, 2013

GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

2D TLD for ion beam QA

ION THERAPY – WAY OF CANCER TREATMENT

State-of-the-art cancer treatment Deliver required dose to tumor

Spare healthy tissue

By means of:

- Brachytherapy, radioisotopes ...
- Photons in "Linac"
- Protons, heavy ions (He,C,O)

2D TLD for ion beam QA

ION THERAPY – WAY OF CANCER TREATMENT

2D TLD for ion beam QA

Ion Therapy – Methods

C. Rank, Diploma Thesis, Uni. Heidelberg, 2013

ION DELIVERY SYSTEMS

2D TLD for ion beam QA

Kraków – Heidelberg

2D TLD for ion beam QA

Heidelberg Ion Beam Therapy Center (HIT)

www.klinikum.uni-heidelberg.de

2D TLD for ion beam QA

HIT SCANNING BEAM ONLY BUT A HUGE GANTRY

255 steps

HIT facility properties:

- Carbon energies: 88 430 MeV/u
- Proton energies: 48 221 MeV
- Range in $H_2O: 2 30$ cm (1.5 mm step)
- Spot sizes: 4 mm for ¹²C 30 mm for ⁺p
- Field for Scanning: 20x20 cm²

Combs, S. E., et. al., 2010, Particle therapy at the Heidelberg Ion Therapy Center (HIT) - Integrated research-driven university-hospital-based radiation oncology service in Heidelberg, Germany. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 95(1), 41– 4. doi:10.1016/j.radonc.2010.02.016 www.klinikum.uni-heidelberg.de

2D TLD for ion beam QA

QUALITY ASSURANCE OF ION BEAM

2D TLD for ion beam QA

The principle of 2D TL Dosimetry

DOSIMETRIC SYSTEM

- Water resistance and flexibility
- Up to 20 x 20 cm^2
- Reusability
- Resolution ~0.2 mm
- Linearity of dose response: 0.5-20 Gy
- $1 \text{mm}_{\text{TLD}} = 1.64 \text{mm}_{\text{H}_{20}}$ (<0.01‰ ag. with MC sim.)

2D TLD for ion beam QA

DOSIMETRIC PROPERTIES – UNIFORMITY

Measured Dose Profile

2D TLD for ion beam QA

DOSIMETRIC PROPERTIES – REPRODUCIBILITY

More than 20 equivalent irradiations and readouts

2D TLD for ion beam QA

DOSIMETRIC PROPERTIES – DOSE RESPONSE

Linearity Index $\frac{f(D)}{D}$ is constant within ±5% for protons (older reader) and ±3% for Co-60 (newer reader)

2D TLD for ion beam QA

Scanning Beam Quality Assurance

Main parameters in QA

Positions and shapes of spots

Uniformity of large fields

2D TLD for ion beam QA

Scanning Beam QA – single spots

Reference methods:

- Fluka simulations
- Kodak[®] EDR2 films
- Multiwire Proportional Chamber

Scanning Beam QA – uniform fields

Dose response

10 Gy 16 Gy 6 Gy 13 Gy 20 Gy 7 Gy 4 Gy

Different calibration for different radiation

400

500

Kodak publication N-923

600

2D TLD for ion beam QA

ENERGY/LET DEPENDENCE

ENERGY/LET DEPENDENCE

Summary

Made at HIT:

- The main dosimetric properties measured
- Suitability for scanning beams QA checked

TO DO:

- Prepare procedures of usage
- Prepare standards for scanning beam QA
- Use the system at CCB

Thank You for Your attention

www.bitbunnys.de

This project is supported by the Foundation for Polish Science – MPD program, co-financed by the European Union within the European Regional Development Fund