Novel ¹²⁹Xe SEOP polarizer for medical and material studies

Anna Wojna-Pelczar

II Symposium on applied nuclear physics and innovative technologies 24 - 26. 09. 2014, Krakow

Anna Wojna-Pelczar

Motivation

- Lungs challenging to diagnose e.g. ¹H MRI
- SPECT, PET, MDCT, spirometry brought exploitable parameters, but...
- NMR signal is proportional to polarization and density

$$\boldsymbol{S}\sim
ho\cdot \boldsymbol{P}, \boldsymbol{P}=rac{oldsymbol{N}_{\downarrow}-oldsymbol{N}_{\uparrow}}{oldsymbol{N}_{\downarrow}+oldsymbol{N}_{\uparrow}}$$

• ¹H MRI:

$$P \sim rac{\gamma \hbar B_0}{2k_B T}, T = 296K, B_0 = 1.5T, P \sim 10^{-5}\%$$

- High-resolution morphology, non-invasive/non-ionizing imaging (MRI)
- ³He and ¹²⁹Xe: in order to keep 1 atm. \rightarrow boost P with MEOP and SEOP, P \rightarrow 1 80%

Anna Wojna-Pelczar

Isotope	¹²⁹ Xe	³ Не
Nuclear spin	1/2	1/2
Abundance [%]	26.4	1.3×10^{-4}
Gyromagnetic ratio [MHz/T]	11.778	32.433
Chemical shift [ppm]	7500, 200 ppm in lungs	0.8
Characteristics	anestetic, lipofilic	neutral
	neutral	

Anna Wojna-Pelczar

Principles - Spin Exchange Optical Pumping

- Optical pumping (Kastler, 1950)
- Magn. field: B₀, buffer gases: N₂, ⁴He
- 795 nm, $\sigma \pm$, high power

$$P_{Rb}(z,r) = rac{\gamma_{OP}(z,r)}{\gamma_{OP}(z,r) + \Gamma_{SD}}$$

Anna Wojna-Pelczar

- 129 Xe (enriched > 0.91), N₂, ⁴He mixes with Rb vapour
- Iow ¹²⁹Xe content
- moderate pressure regime ~ 1 bar
- large the SEOP cell: 80 cm, 10 cm diameter, 5 L
- high power laser source 60 Watts
- homogeneous magnetic field
- cryogenic accumulation
- oplarization readout system: NMR

Anna Wojna-Pelczar

¹²⁹Xe polarizer

¹²⁹Xe polarizer - Optics

 Scientific DUO FAP System, Coherent, 2×30 Watt diodes, linewidth < 2 nm,

- two bundle fiber (2 \times 800 μ m) \rightarrow radiator for colimator
- a home-made beam expander
- 2 \times 2 σ \pm (2 cm diam.) beams on optical window
- 45 Watts inside the SEOP cell

Anna Wojna-Pelczar

- Rb: easy to vaporize, good availability of relatively cheap, high-quality, high-power laser sources at D₁ line
- differnet content separate distribution
- gases mix inside the SEOP cell

Anna Wojna-Pelczar

Initial results - laser tuning and spectrum profile

- The profiles were collected from laser beam passing through the SEOP cell
- The adapted Carl Zaiss Jena spectrometer (calibrated with a reference lines D₁ and D₂ from a small rubidium cell with radio frequency discharge)
- The spectral resolution of this unit is about 0.02 nm

New laser source is being built

 N_2 212 mbar (blue), N_2 248.2 (green), N_2 and ^4He 314.0 mbar (red), N_2 and ^4He 414.0 mbar (orange)

Anna Wojna-Pelczar

Initial results - ¹²⁹Xe NMR signal and its calibration

- RF coil (6 cm × 6 cm)
- HP ¹²⁹Xe NMR signal from the SEOP cell containing 5.7% ¹²⁹Xe, 20% N₂ and 74.3%
 ⁴He acquired at 2.1 mT
- water NMR spectrum at 0.59 mT, 6000 averages
- Max. polarization after t \sim 30 min

$$P_{Xe} = \frac{S_{Xe}P_{H}N_{H}\gamma_{H}sin(\alpha_{H})f(\nu_{H})e^{-\frac{l_{dH}}{T_{2H}}}}{S_{H}N_{Xe}\beta_{Xe}\gamma_{Xe}sin(\alpha_{Xe})f(\nu_{Xe})e^{-\frac{l_{dXe}}{T_{2Xe}}}}$$

¹²⁹ Xe: N ₂ : ⁴ He	P _{Xe}	Perform.
0.020 : 0.200 : 0.780	15%	0.2 L/h
0.057 : 0.20 : 0.743	8%	0.5 L/h

Anna Wojna-Pelczar

Near future plans

- Laser improvement: 795 nm diode with diffraction grattings
- NMR signal measurement from HP ¹²⁹Xe in cryogenic accumulation cell

 Human lungs image with HP ¹²⁹Xe

Anna Wojna-Pelczar Novel ¹²⁹Xe SEOP polarizer for medical and material studies

More motivation - Exploring Lung Function

Figure 2: Selected sections from representative ¹⁰/% ventilation and ¹H MR anatomic images in individual subjects. A Staaty-state hete-procession ¹H MR images in a healthy volumeter. *B* Corresponding ¹⁰/% ventilation MR images in the same healthy volumeter. *C* Steady-state free-procession ¹H MR images in the same volume to CPU. D, C corresponding ¹⁰/% ventilation MR images in the same volgect with COPU have adstatisfical ventilation delets and regions bading unertaktion.

Radiology: Vol. 262, No. 1, 2012

- 1 red blood, 2 lung tissue,
- 3 blood plasma adipose tissue,
- 4 xenon gas

Concepts in Magnetic Resonance, Vol. 11 (4) 203-223, 1999

¹²⁹Xe follows the same pathway as oxygen:

- \rightarrow from alveolar gas spaces to septal tissue and blood
- \rightarrow gas exchange parameters (alveolar surface area, septal thickness and vascular transit times).

Anna Wojna-Pelczar

Even more motivation - Spin Spy

 ¹²⁹Xe has large electronic cloud - chemical shift ~ 7500 ppm

T. Pietra and H.C. Gaede, Adv. Mater 7, 10, 826, 1995 Encapsulating HP ¹²⁹Xe in Cryptophane

the Wemmer Lab & A. Pines & M. Francis

Anna Wojna-Pelczar

Thank you for your attention!

Anna Wojna-Pelczar

On the NMR spectrum scale, the position of resonance is given by δ , where

$$\delta = \frac{\nu - \nu_{TMS}}{\nu_0}$$

 $\nu - \nu_{TMS}$ is the frequency difference between the resonance of the signal of

interest and the resonance of TMS; ν_{TMS} will always be in units of Hz (from 1 Hz to a few thousand Hz);

 ν_0 is the center frequency of the B₁ field in megahertz (MHz). If B₀ = 7.05 T, = 300 MHz for ¹H nuclei or 75 MHz for ¹³C nuclei. If B₀ = 11.75 T, = 500 MHz for ¹H nuclei or 125 MHz for ¹³C nuclei.

Anna Wojna-Pelczar