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Introduction

«¢* Ghosts” of World Wars: 42-65 kt of chemical
munitions sunk in the Baltic Sea

% Main known contamined areas: Little Belt, | MO
Bornholm Deep (east of Bornholm) and the = ES R (Sweden)
south-western part of the Gotland Deep

Suomi

s Unknown amount of chemical

leftovers are spread around the Baltic
Sea

JatLatvija
.
(Latvia)

% Serious threat for people and environment 8 4 ° /TTJ\

(Lithuania)
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+» ,Fake amber” on the coast _ :
s+ Mustard gas ,,fished" out the sea http://.sfora.pI/poIskalNapaIm—W—Baltyku—Przed—katastrofa—nie—ma—ratunku—a52539
+* Sunk conventional munitions threatens

marine

*» Genetic mutations of marine fauna

*» 1/6 of the sunk munition released into Baltic = entire degradation of live
in the sea and at its shores for 100 years!!



Introduction

% Main agents do deal with:

Mustard gas (C,HgCl,S) Sarin (C,H,,FO,P) Fosgen (COCL,)
E ‘
Soman (C,H,,FO,P) Tabun (CcH,,N,0,P) VX (C;H,,NO,PS)

e g

¢ Presently used detection methods:
% Sonars (shape and localization) + diver/robot inspection (evaluation of
the ammunition shell and type)
% ,By chance”: during fishing, etc.

¢ High economic and environmental costs has been preventing so far any activities
aiming at extraction o these hazardous substances



Neutron Activation Techniques

** Novel methods of nondestructive D+T 2> a +n
chemical threat detection based on n +nucleus > nucleus +y +n

neutron activation:

= A

neutron

nucleus

Thermal neutron capture Neutron inelastic
(sources, D+Dgenerators) scattering
(D+D/D+T generator)

Y quantum

energy characteristic of the element

!

Relative content of elements < Stoichiometry ‘ Identification

detector

Excited nuclei emit gamma quanta of '



Neutron Activation Techniques

¢ Signature: gamma quanta of the following nuclei:
12( (4.43 MeV), 160 (6.13 MeV), 14N (2.31 MeV, 5.11 MeV), 37Cl (1.73 MeV, 3.1 MeV) 32S (3.78 MeV)
31p (1.27 MeV) 19F (0.11 MeV, 0.197 MeV)

J
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High penetration allows detection of
explosives/ which are hidden in
vehicles, buried, etc.

¢ The use of pulse generators and
detection of correlated a particles
allows to measure the neutron time of
flight << topographical picture of the
chemical composition of the
substance

Drawbacks:
= High neutron attenuation in water
= High background from Oxygen and Hydrogen
= Small cross sections for some of the elements
= Decreased mobility due to detector cooling
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Neutron Activation Techniques

Y quanta detection Data analysis
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Underwater application

¢ The 14.1 MeV neutron generator with

a particle detection ——
11 & identification
*
118

-

+*

»* Neutron and y quanta attenuationin '
water minimized by guides filled with

air or some other gas 16
106¢ 112 114 =
. . . 100 106a
¢ Changeable position and orientation of M\ R \
. 1
guides o1 - — = 120
121 \DEE = vaws't'o: Receiver
" "y . 10 1 —]
¢ Position-sensitive detector (plastic o = i 113
scintillator) / b\ /7 11
103 @
< Depth of neutron interaction
determined from the time difference
betweenneutron and y quantum ws\ -
registration times: 109
[ l CV,COSP -
a n n e
=lat—-—-—2-2L — T
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GEMNERATOR PARAMETERS:

number of beams:

numbar o neutram par beam
=

Eany

.
CRETECTOM PARAMET ERS:
naberial

SCEME
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"’ thread: NeutronGeneratar thread: Administrator Ic:luJI
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¢ Target OS: Linux (Debian or Red " 5
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& 3
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Parallel computing | T, [ |
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generate quantum gamma
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0’0 0’0

is inside detector

all threads are free
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Summary

% The chemical munitions sunk in seas constitute a very serious threat for environment
and people

% Methods of detection used so far are not efficient enough to detect all contaminated
sea areas

J
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Promising improvement: neutron activation techniques used on the submarine

» Design of the prototype of such device has started in the Institute of Physics of the
Jagiellonian University

*» We are developing a new fast simulation tool devoted to the Neutron Activation
Analysis applications

» First simulations of complete identification system expected for the end of December
2014
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(L substances with N, atoms in molecule)
In(1— F|
_(1-F@) Loy e o,
tot
(F = Cumulative distribution function of x pdf generated with constant probability)
1]
Bioe = 9 KB

=1

P(x) =1 —exp(—ppx) = x =

L L
i piNg Ut

K= et K= Y Kty o Ky = Y Ky

( I S T 5yMy g = mIk Ep“:")
kyy — concentration of i*" atom in {™substance
85— i stochiometric coeficient (number of i**atoms in molecule [DB]
M; — molar mass of j'" element [DB]

1 — density of '"substance [DB] 250

uy; and wyy — volume and mass fraction of [ substance, respectively [CF]
01 (Epenr) — total cross section [MT = 1] for interaction with i*" element [DB]

T F 200

Element
1 (Eneut) _ [ x<Xpa | -| neutron propagated to X,,,.

2L, KiOi(Eneur)

PU)

Elastic scatering [MT=2]

E'veut = Encut
[DB] neutron angular distibution = new neutron direction 150
Process Fission
(M processes chosen by user in the Config File) ﬂ n+A - A' + A" [MT=19] (total neutron energy deposition)
_ op(Eneur) _ 0 (Eneu) n+A—=n' +4'+4" [MT=20]
PO = S e " P G ntd -2 4+ A4+ A7 MT=21]
o — cross section for the process i [DB] n+A —3n' + A"+ 4" [MT=38]
Neutron(s) energiese[DB] 100
[DB] neutron angular distibution = new netron direction
L n;
n+A-n' +A" =n'+ A4 +y[MT=51-91] state s0
n+A-p+ .lh “p+ A', + ¥ [MT=601-649] n+A = p+ A’ [MT=600] nid—2n+ A [MT=16]
Bl SRR Tl TR n+A - d + A' [MT=650] n+d - 2n+ A’ +y [MT=876]
A =T+ A" =T+ A"+ [MT=701-749] n+A - T + A'[MT=700] WA emtat A [MT=22]
n+A = *He + A,. = *He -t A"+ y [MT=751-749] n+A - 3He + A’ [MT=750] n+A-n+p+A [MT=28]
ntA-a+A” sa+ A +1‘r_[MT‘7301-849] n+d > a + A’ [MT=800] n+d —n+d+ A [MT=32
Radiative Capture:n + A - A" — A'y [MT=102] ’ (Epent + M‘)z _ Mza' + mzpmm‘_ n+A =T +n+ A'[MT=33]
Fparticte = 2(Eneut + My) n+A - 3He +n + A' [MT=34] o
[DB] particle angular distibution = n+A — 2a + A’ [MT=108]
particle direction n+A - 2p + A’ [MT=111]
M, /My, .my,—mass of initial/final nuclei and n+A—a+p+A [MT=112]
" final particle, respectively [DB] n+A—>d+p+A° [MT=115]
ntA - T+p+A [MT=116]
(Z levels chosen by user in the Config File) n+A - a+d+ A [MT=117]
Ple) = Fep(Eneut)
S BT n+d - 3n+ A [MT=17]
oy — cross section for excitiation of level i [DB] n+Ad—n+2a+A [MT=29]
List of y's [DB] or sequensional calculations of y's n+A = 2n+p+ A [MT=41]
energies < levels energies [DB] n+Ad - n+2p + A' [MT=44]
E'pariscle ntA-pta+n+ ‘n'[ MT=45]
(Epeur + Mg)% — Mz‘, + ,mzlmmth L n+A =T+ 2a+ A" [MT=113]
2(Epeus + M) ;E" n+d - 4n + A’ [MT=37]
[DB] particle angular distibution = particle direction ntA - 3n+p+ A [MT=42]
N gamma quanta with energy E, [DB] and direction < n+A = n+3a+ A [MT=28]
y angular distribution [DB] (usually homogeneous) n+Ad - 3n+a+ A’ [MT=25]
My /My, Mypgryicr, —mass of initial/final nuclel and particle directions and energies have to be
final particle, respectively [DB] generated according to the phace space for
M=1...4 particles in the final state (e.g.
GENBOD)

Neutron absorption
[MT=27; sum of MT=18 and MT=102 through MT=117]
Neutron disappearance
[MT=101; sum of MT=102-117]




