Search for polarization effects in the antiproton production process

→ CERN Experiment P349

Dieter Grzonka, IKP Forschungszentrum Jülich

D. Grzonka, K. Kilian, J. Ritman, T. Sefzick Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany

W. Oelert Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

E. Widmann, J. Zmeskal Stefan-Meyer-Institut für subatomare Physik, Boltzmanngasse 3, 1090 Wien, Austria

P. Moskal, M. Zielinski Institute of Physics, Jagiellonian University, ul. Reymonta 4, PL-30 -059 Krakow, Poland

M. Wolke Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden

P. Nadel-Turonski Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606

T. Horn, M. Carmignotto Physics Department, The Catholic University of America, 210 Hannan Hall, Washington, DC 20064

H. Mkrtchyan, A. Asaturyan, A. Mkrtchyan, V. Tadevosyan, S. Zhamkochyan A. I. Alikhanyan Science Laboratory (Yerevan Physics Institute), Yerevan 0036, Armenia

S. Ettenauer, CERN, Physics department

W. Eyrich, F. Hauenstein, A. Zink Physikalisches Institut, Universität Erlangen, Erwin-Rommel-Strasse 1, 91058 Erlangen, Germany

- Introduction
- Motivation
- How to get polarized p
 Λ-decay
 Ω in City and the l
 - Spin-filter method
 - Polarization in \overline{p} production
- Measurement of polarization CNI region
- Experimental setup
- Possible results

Introduction

hadrons and leptons like proton, antiproton, electron, positron, ...

fermions: spin S = 1/2spin : intrinsic angular momentum ,

 \Rightarrow rotation of the particle, quantum behavior without classical analog !

quantized, spin component along quantization axis z : $s_z = +1/2$ or $s_z = -1/2$ magnetic moment $\mu = -e/2m$ g S,

Generell: strong forces are spin-dependent!

With polarization another degree of freedom under control → more detailed analysis

Motivation

Preparation of a polarized antiproton beam

High Energy:							
nucleon quark structure :	logitudinal momentum distribution helicity distribution	$f_1(x)$ precise data DIS $g_1(x)$					
	transversity distribution	$h_1(x) \leftarrow PAX$ polarized \overline{p}					
<u>Low Energy</u> : spin degree of freedom \rightarrow more detailed analyses possible							

e.g. : **p** p annihilation at rest

high density target \rightarrow stark mixing \rightarrow S-wave

possible states: ${}^{1}S_{0}$ singlet \checkmark ${}^{3}S_{1}$ triplet \checkmark

How to get Polarized Antiproton Beams

many ideas \rightarrow

mostly very low intensity or polarization is expected

or

calculations impossible and feasibility studies require large effort.

- hyperon decay,
 - spin filtering,
 - spin flip processes,
 - stochastic techniques,
 - dynamic nuclear polarization,
 - spontaneous synchrotron radiation,
 - induced synchrotron radiation,
 - interaction with polarized photons,
 - Stern-Gerlach effect,
 - channeling,
 - polarization of trapped antiprotons,
 - •antihydrogen atoms,
 - polarization of produced antiprotons

see e.g: A.D. Krisch, A.M.T. Lin, and O. Chamberlain (edts), AIP Conf. Proc. 145 (1986)

E. Steffens, AIP Conf.Proc 1008, 1-5 (2008) AIP Conf.Proc.1149, 80-89 (2009)

H. O. Meyer, AIP Conf.Proc.1008, 124-131 (2008)

used method: hyperon decay: $\overline{\Lambda} \rightarrow$

- hyperon decay: $\bar{\Lambda} \rightarrow \bar{p} + \pi^+$ (63,9 %)
 - $\overline{\mathbf{p}}$: helicity h = 0.64.

⇒ limited to dedicated experiments

Methods to Produce Polarized Antiprotons

Decay makes \overline{\mathbf{p}} with helicity h = -0.64. Lorentz boost creates transverse vector polarization. First and so far only experiment with **polarized 200 GeV** $\overline{\mathbf{p}}$ at Fermilab. $\overline{\Lambda}$ production with primary proton beam. At the end an average of 10⁴ polarized $\overline{\mathbf{p}}$ s⁻¹ A. Bravar et al. Phys. Rev. Lett. 77, 2626 (1996)

Methods to Produce Polarized Antiprotons

Spin filter method

Suggested for the ISR at CERN : P.L.Csonka, Nucl. Instr. Meth. 63 (1968) 247

If singlet and triplet cross sections are different, then an internal polarized target depletes one of the stored spin components faster than the other. Polarization rises on the expense of intensity.

Spin filtering for polarized antiprotons works only with cooling

avoids beam blow up and losses by multiple scattering

K.Kilian 1980, Pol. Conf. Lausanne, K.Kilian & D.Moehl 1982, Erice LEAR workshop (#)

How to get Polarized Antiproton Beams

Spin filtering

proposed method for FAIR \rightarrow PAX

(PAX collaboration, arXiv 0904.2325 [nucl-ex] (2009)

works in principle, protons at TSR (F. Rathmann et al., PRL 71, 1379 (1993)) and COSY (W. Augustyniak et al., PLB 718 64-69 (2012))

but enormous effort: separate filter storage ring (Sibirian snakes), filter time $T \approx 2\tau$ (beam life time)

 \Rightarrow reasonable to investigate other possibilities

How to get Polarized Antiproton Beams

many ideas \rightarrow

mostly very low intensity or polarization is expected

or

calculations impossible and feasibility studies require large effort.

- hyperon decay,
 - spin filtering,
 - spin flip processes,
 - stochastic techniques,
 - dynamic nuclear polarization,
 - spontaneous synchrotron radiation,
 - induced synchrotron radiation,
 - interaction with polarized photons,
 - Stern-Gerlach effect,
 - channeling,
 - polarization of trapped antiprotons,antihydrogen atoms,
 - polarization of produced antiprotons

most simple idea: production of polarized antiprotons

why is polarization expected ?

why not !

(production of hyperons show polarization, e.g. $P(\Lambda) < 20\%$)

would be a simple and "cheap" solution for a polarized \overline{p} beam \Rightarrow experimental study of possible polarization effects in \overline{p} production

Polarized production

Polarized production

p production and transport to AD

JÜLICH FORSCHUNGSZENTRUM

Measurement of Polarization Effects

• Production of p under useful conditions

 \overline{p} momentum ≈ 3.5 GeV/c (\overline{p} production at AD and future FAIR facility)

no s-wave production ($\theta_{lab} > 56 \text{ mrad}$)

⇒ <u>T11:</u>

 \overline{p} momentum ≤ 3.5 GeV/c (≤ ± 5%) production angle = 150 mrad (± 3 mrad h, ±10 mrad v)

• Measure transverse polarization

 ϕ - distribution of the scattering of produced \overline{p} in an analyzer target

$$\label{eq:starses} \begin{split} &d\sigma/(d\theta d\phi) = d\sigma/d\theta \;(\; 1 + A_y * P * cos(\phi)\;) \\ &determination \; of \; polarization \; P \; requires \; knowledge \; of \; A_y \\ & \twoheadrightarrow \mbox{CNI region} \end{split}$$

Ay in the CNI Area

helicity frame:

$$\begin{split} \varphi_{1}(\mathbf{s},\mathbf{t}) &= \langle +\frac{1}{2} + \frac{1}{2} | \varphi | + \frac{1}{2} + \frac{1}{2} \rangle, \\ \varphi_{2}(\mathbf{s},\mathbf{t}) &= \langle +\frac{1}{2} + \frac{1}{2} | \varphi | - \frac{1}{2} - \frac{1}{2} \rangle, \\ \varphi_{3}(\mathbf{s},\mathbf{t}) &= \langle +\frac{1}{2} - \frac{1}{2} | \varphi | + \frac{1}{2} - \frac{1}{2} \rangle, \\ \varphi_{4}(\mathbf{s},\mathbf{t}) &= \langle +\frac{1}{2} - \frac{1}{2} | \varphi | - \frac{1}{2} + \frac{1}{2} \rangle, \\ \varphi_{5}(\mathbf{s},\mathbf{t}) &= \langle +\frac{1}{2} + \frac{1}{2} | \varphi | + \frac{1}{2} - \frac{1}{2} \rangle. \end{split}$$

$$\frac{d\sigma}{dt} \sim |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 + 4 |\phi_5|^2$$

$$Ay \frac{d\sigma}{dt} = -Im [(\phi_1 + \phi_2 + \phi_3 - \phi_4) \phi_5^*]$$

$$\phi_i = \phi_i^{had} + \phi_i^{em}:$$

$$Ay \frac{d\sigma}{dt} = (Ay \frac{d\sigma}{dt})^{had} + (Ay \frac{d\sigma}{dt})^{em} + (Ay \frac{d\sigma}{dt})^{int}$$
interference of nuclear non-spin-flip and em spin-flip (due to magnetic moment)

A_y in the CNI Area

 $\phi_1(s,t) = \langle +\frac{1}{2} + \frac{1}{2} | \phi | + \frac{1}{2} + \frac{1}{2} \rangle,$ helicity frame: $\phi_2(\mathbf{s},\mathbf{t}) = \langle +\frac{1}{2} + \frac{1}{2} | \phi | -\frac{1}{2} - \frac{1}{2} \rangle,$ $\phi_3(\mathbf{s},\mathbf{t}) = \langle +\frac{1}{2} - \frac{1}{2} | \phi | + \frac{1}{2} - \frac{1}{2} \rangle,$ $\phi_4(\mathbf{s},\mathbf{t}) = \langle +\frac{1}{2} - \frac{1}{2} | \phi | -\frac{1}{2} + \frac{1}{2} \rangle,$ $\phi_5(\mathbf{s},\mathbf{t}) = \langle +\frac{1}{2} + \frac{1}{2} | \phi | + \frac{1}{2} - \frac{1}{2} \rangle.$ for small t and high energy: (N. Akchurin et al., Pys. Rev. D 48, 3026 (1993), and ref. cited.) $A_y^{em}(t) = 0$ (single photon exchange assumed)

$$\begin{split} A_{y}^{had}(t) &\approx \sqrt{t/s} \quad (\text{negligible for t/s} \rightarrow 0 \) \\ A_{y}^{int}(t) &= A_{y}^{int}(t_{p}) \frac{4 \ (t/t_{p})^{3/2}}{3 \ (t/t_{p})^{2} + 1} \qquad \qquad t_{p} = \sqrt{3} \ (8\pi\alpha/\sigma_{tot}) \\ &\approx -0.003 \\ A_{y}^{int}(t_{p}) &\approx \frac{\sqrt{3}}{4} \ (\mu-1) \ \frac{\sqrt{t_{p}}}{m} \quad \approx 0.046 \qquad (\mu : \text{magnetic moment}) \end{split}$$

⇒
$$A_y \approx 4.6 \%$$
, at t ≈ -0.003
for pp and pp (G-parity)

$$\frac{d\sigma}{dt} \sim |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 + 4 |\phi_5|^2$$

$$Ay \frac{d\sigma}{dt} = -Im [(\phi_1 + \phi_2 + \phi_3 - \phi_4) \phi_5^*]$$

$$\phi_i = \phi_i^{had} + \phi_i^{em}:$$

$$Ay \frac{d\sigma}{dt} = (Ay \frac{d\sigma}{dt})^{had} + (Ay \frac{d\sigma}{dt})^{em} + (Ay \frac{d\sigma}{dt})^{int}$$
interference of nuclear non-spin-flip and em spin-flip

(due to magnetic moment)

Ay in the CNI Area

Experimental Setup

- track reconstruction of primary particle
- elastic scattering in IH₂ target (scintillator target)
- track reconstruction of scattered particle
- particle ID determination by Cherenkov (online) and DIRC (offline)
- \bullet generation of $\phi\text{-distribution}$

Expected particle ratios

(measured at 127 mrad, 4 GeV/c, T. Eichten et al., 24 GeV/c, Nucl. Phys. B 44, 333-343 (1972)

target	π^+	K ⁺	р	π^{-}	K-	\bar{p}	$\bar{p}/(\pi^{+}+K^{+}+p)$
Be	1	0.12	0.48	0.79	0.040	0.0072	0.0045
B_4C	1	0.12	0.50	0.78	0.041	0.0072	0.0045
Al	1	0.13	0.57	0.78	0.042	0.0073	0.0043
Cu	1	0.14	0.64	0.80	0.045	0.0073	0.0041
Pb	1	0.16	0.36	-	-	-	-

<u>At T11</u>: $1 \cdot 10^6$ particles/spill with setting for positively charged particles (incident proton beam flux between $2 \cdot 10^{11}$ and $3 \cdot 10^{11}$)

from ratios in table: $\approx 4000 \text{ p/spill}$, total flux of negatively charged particles $\approx 5 \cdot 10^{5/\text{spill}}$, i.e. $1 \cdot 10^{6/\text{s}}$

 σ (t-range:—0.002 to -0.007) \approx 1.35 mb target: 10 cm lH_2 or 10 cm CH

 \Rightarrow 3 useful events / spill

2 spills every 30 s, mean spill rate: 4000 spills/day, 84000 spills in 21 days

<u>3 weeks beam time : 2.5 10⁵ expected scattering events</u>

 \Rightarrow measurement of 20% polarization possible, statistical precision 25%

Possible Result

MC data sample for 2.5 10⁵ events including 20% polarization and 4.5% asymmetry

or if P = 0

 \Rightarrow no effect

experiment end of 2014

Polarization of produced antiprotons would drastically simplify the preparation of a polarized antiproton beam!

Apart from polarized antiproton beam: → better understanding of p interaction

Possible Result

MC data sample for 2.5 10⁵ events including 20% polarization and 4.5% asymmetry

or if P = 0

 \Rightarrow no effect

experiment end of 2014

Polarization of produced antiprotons would drastically simplify the preparation of a polarized antiproton beam!

Apart from polarized antiproton beam: → better understanding of p interaction

Thank you for your attention