Test of discrete symmetries with the

WASA detector at COSY

UUCLE

UPPSALA UNIVERSITET **II SYMPOSIUM ON APPLIED NUCLEAR PHYSICS**

September 24 - 27, 2014, Collegium Maius Jagiellonian University, Kraków, Poland

AND INNOVATIVE TECHNOLOGIES

0

1

JAGIELLONIAN UNIVERSITY IN KRAKOW

FNP

KNON

Discrete Symmetry =

Discrete Symmetry =

ymmetry describing non-con tinuous changes in a system

HXar ples from Particle Physics (in this talk):

Charge Conjugation Symmetry

-CP combined C and P(arity) Symmetry

(Rare) Decays of light mesons and symmetries

Rare decays are rare since

- Standard Model mechanisms are small
- symmetries are violated

(Rare) Decays of light mesons and symmetries

Rare decays are rare since

- Standard Model mechanisms are small
- symmetries are violated

\Rightarrow window for searches for new physics beyond the SM

...this means searches for

- rare or forbidden decays
- asymmetries between decay particles in not-so-rare decays
- light dark-matter particles

A. Kupsc, A. Wirzba, DISCRETE 2010, J Phys Conf Ser 335 (2011) 012017

Facilities

CLAS at JLAB

Crystal Ball at MAMI

Crystal Barrel at ELSA

photoproduction

fixed target experiments

hadroproduction

PID & tracking detectors

HADES at GSI

WASA at COSY

Pellet line

Tracking Detecto

TAPS

KLOE-2 at DAQNE

0 111

EM Calorimeter Thin Plastic Scintillators BESIII at BEPCII

e⁺e⁻

Charge Conjugation Symmetry (C parity)

C operator \equiv full switch in sign of **all** additive quantum numbers

(baryon number, lepton number, isospin, strangeness, charm, ..., charge)

other quantities remain unchanged

(mass, momentum, spin)

transforms particles into antiparticles

$$(C|e^{-}> = |e^{+}>; C|\pi^{-}> = |\pi^{+}>; C|p> = |p>)$$

- eigenstates: only neutral particles or particle-antiparticle systems
- C parity is violated in weak interactions, but (believed to be) $(C|\eta > = |\eta >; C|\pi^{0} > = |\pi^{0} >; C|\gamma > = -|\gamma >; C|e^{+}e^{-} > = (-1)^{L+S}|e^{-}e^{+} >$

conserved in strong and electromagnetic interactions

- heaviest of octet Goldstone bosons \Rightarrow many open decay channels
- mass and all interactions vanish in the chiral limit \Rightarrow basis for effective field theory approach (ChPT)
- eigenstate of *P*, *C*, *CP*, and *G*, $I^{G}(J^{PC}) = 0^{+}(0^{-+})$ \Rightarrow first order strong and electromagnetic decays forbidden
- \Rightarrow laboratory to study (non-)conservation of these discrete symmetries

Tests of C symmetry in rare n decays

n decays into neutrals with an odd number of photons

• simplest case: $\eta \rightarrow 3\gamma$

$$\eta \rightarrow \gamma + (\gamma \gamma)_{J=0}$$
 forbidden for real $\gamma (0 \rightarrow 0$ transition)
 $\eta \rightarrow \gamma + (\gamma \gamma)_{J=1}$ forbidden by Bose symmetry

 \Rightarrow each ($\gamma\gamma$) pair hase to have at least J=2

 $BR(\eta \to 3\gamma) \le 1.6 \times 10^{-5}$

Crystal Ball PRC 72 (05) 035212

 $BR(\eta \to \pi^0 \gamma) \le 9 \times 10^{-5}$

KLOE PLB 591 (04) 49

•
$$\eta \to \pi^0 \gamma$$
 $0 \to 0$ transition

•
$$\eta \rightarrow \pi^0 \pi^0 \gamma$$
, $\eta \rightarrow 3 \pi^0 \gamma$, ...

η decays into neutrals with an odd number of l^+l^-

•
$$\eta \rightarrow \pi^0 e^+ e^-$$

Tests of C symmetry in rare n decays

η decays into neutrals with an odd number of l^+l^-

Standard Model C conserving contribution:

 $BR(\eta \to \pi^0 e^+ e^-) \approx 1.1 \times 10^{-8}$ T.P.Cheng, PR 162 (67) 1734

C invariance violating process:

M.R.Jane et al., PLB 59 (75) 99

 $BR(\eta \to \pi^0 e^+ e^-) \le 4.5 \times 10^{-5}$

experiment:

PDG: $BR(\eta \to \pi^0 e^+ e^-) \le 4.0 \times 10^{-5}$

invariant mass of $\pi^0 e^+ e^-$

M.Zielinski, PhD thesis, arXiv: 1301.0098 [hep-ex]

 \Rightarrow new upper limit below present PDG value

 $BR(\eta \to \pi^0 e^+ e^-) \le 3.7 \times 10^{-5}$ this work:

\Rightarrow WASA data should reach one order of magnitude lower and: result based only on few per cent of the available data

 \Rightarrow new upper limit below present PDG value

Counts/ 2 MeV

simulation:

invariant mass of $\pi^0 e^+ e^-$

experiment:

M.Zielinski, PhD thesis, arXiv: 1301.0098 [hep-ex]

CP symmetry and Matter-Antimatter asymmetry

early universe

today

Sakharov conditions (1967)

- 1. baryon number violation
- 2. C and CP violation
- 3. departure from thermodynamic equilibrium

CP violation in K_L decays (1964)

Non-strange particles: $(\pi, \rho, ...)_{i=1}$: $u\overline{d}$, $(u\overline{u} - d\overline{d})/\sqrt{2}$ $(\eta, \omega, ...)_{i=0}$: $(u\overline{u} + d\overline{d})/\sqrt{2} + ...$

Neutral particles are eigenstates of C operator

Strange particles: $(K, K^*, \ldots)_{i=1/2}$: $K^+ = u\overline{s}, K^- = \overline{u}s, K^0 = d\overline{s}, \overline{K}^0 = \overline{d}s$

R

Neutral strange particles are not eigenstate of C operator

experimentally observed: short- and long-lived neutral states K_S and K_L

- Ē. Their observed pionic decays are: $K_s \rightarrow (\pi\pi)^0$ and $K_L \rightarrow (\pi\pi\pi)^0$
- R And it was believed that: $CP|K_S\rangle = +|K_S\rangle$ and $CP|K_L\rangle = -|K_L\rangle$

Cronin, Fitch et al. observe the CP violating $K_L \rightarrow \pi^+\pi^-$ decay

but: amount of CP violation is too small to explain the observed matter-antimatter asymmetry **CP** violation in the Standard Model R 1 experimentally observed: short- and long-lived neutral states K_S and K_L R Non-strange particles: $(\pi, \rho, ...)_{i=1}$: $u\overline{d}$, $(u\overline{u} - d\overline{d})/\sqrt{2}$ Strange particles: And it was believed that: $CP|K_S\rangle = +|K_S\rangle$ and $CP|K_L\rangle = -|K_L\rangle$ Their observed pionic decays are: $K_{s} \rightarrow (\pi\pi)^{0}$ and $K_{L} \rightarrow (\pi\pi\pi)^{0}$ \Rightarrow included in the Standard Model by Cabibbo-Kobayashi-Maskawa formalism Cronin, Fitch et al. observe the CP violating $K_L \rightarrow \pi^+\pi^-$ decay \Rightarrow CP violation in flavour changing weak processes $(K, K^*, \ldots)_{l=1/2}$: $K^+ = u\overline{s}, K^- = \overline{u}s, K^0 = d\overline{s}, \overline{K}^0 = \overline{d}s$ $(\eta, \omega, \ldots)_{i=0}$: $(u\overline{u} + d\overline{d})/\sqrt{2} + \ldots$ not eigenstate of C operator Neutral strange particles are eigenstates of C operator Neutral particles are

 \Rightarrow search for additional sources of CP violation

Tests of CP symmetry in n decays

- Mostly modeled in anology to K_L decays
- Flavor conserving
- \rightarrow not constrained by CKM mechanism
- Search scenarios:
- rare decays, which would be forbidden if CP exact symmetry
- asymmetries among decay products in not-so-rare decays

L.M.Sehgal, M. Wanninger, P.Heiliger, L.M. Sehgal, PRD 46 (1992) 1035 PRD 48 (1993) 4146

interference of amplitudes

 \Rightarrow CP violating linear photon polarisation \Rightarrow CP violating asymmetry in sin $\varphi \cos \varphi$

$$\varphi = \angle (\pi^+ \pi^-), (e^+ e^-)$$
 planes in K_L cms

$$A_{\phi} = \frac{N_{\sin\phi\cos\phi>0} - N_{\sin\phi\cos\phi<0}}{N_{\odot} + N_{\odot}}$$

5
4
$$K_L \rightarrow \pi^+ \pi^- e^+ e^-$$

3 Acceptance corrected
2 A_Φ = (14.2 ± 3.0_{stat})%
1 A_Φ = (14.2 ± 3.0_{stat})%
1 A_Φ = (14.2 ± 3.0_{stat})%
1 A_Φ = (14.2 ± 3.0_{stat})%

φ=sinφcosφ

CP violation in $\eta \rightarrow \pi^+\pi^-e^+e^-$

C.Q.Geng, J.N.Ng, T.H.Wu, MPLA 17 (2002) 1489 D.N.Gao, MPLA 17 (2002) 1583

dominant amplitudes

CP violating bremsstrahlung

Standard Model constraint from $BR(\eta \rightarrow \pi^+\pi^-)$:

experimental upper bound $\Rightarrow A_{\phi} < 10^{-4}$ theoretical prediction $\Rightarrow A_{\phi} \sim 10^{-15}$

C.Q.Geng, J.N.Ng, T.H.Wu, D.N.Gao, MPLA 17 (2002) 1583 MPLA 17 (2002) 1489

\Rightarrow CP violating linear photon polarisation

 \Rightarrow CP violating asymmetry in sin $\varphi \cos \varphi$

$$p = \angle (\pi^+ \pi^-), (e^+ e^-)$$
 planes in η cms

$$A_{\phi} = \frac{N_{\sin\phi\cos\phi > 0} - N_{\sin\phi\cos\phi < 0}}{N_{\sin\phi\cos\phi > 0} + N_{\sin\phi\cos\phi < 0}}$$

 \Rightarrow construct operators, that do not contribute

 \Rightarrow flavor conserving CP violating four-fermion operators involving two s-quarks

directly to $\eta \to \pi^+\pi^-$ and K^0 decays

preliminary results: $BR(\eta \to \pi^+\pi^-e^+e^-) = (3.10 \pm 0.27_{stat} \pm 0.22_{sys}) \times 10^{-4}$

• 3×10^7 tagged pd $\rightarrow {}^3$ He η events

 $\pi^+\pi^-e^+e^-$ at WASA

• $263 \pm 24_{\text{stat}}$ signal events

$\eta \rightarrow \pi^+\pi^-e^+e^-$

KLOE

 $A_{\phi} = (-0.6 \pm 2.5_{stat} \pm 1.8_{sys}) \times 10^{-2}$

 $A_{\phi} = (0.4 \pm 9.0_{stat} \pm 2.8_{sys}) \times 10^{-2}$

WASA preliminary

$\eta \rightarrow \pi^+ \pi^- e^+ e^-$

WASA preliminary

 $A_{\phi} = (0.4 \pm 9.0_{stat} \pm 2.8_{sys}) \times 10^{-2}$

A.Kupsc, A.Wirzba, hep-ph 1103.3860 (DISCRETE 2010)

CP test without analog in K_L sector: $\eta(\prime) \rightarrow 4\pi^0$

B.M.K.Nefkens (Dubna, 1994), Crystal Ball PRL 84 (00) 4802

estimates: $\text{BR}\,(\eta\to 4\pi^0)\leq 10^{-10}$

 $\mathrm{BR}\,(\eta'\to 4\pi^0) \le 10^{-8}$

A.Kupsc, A.Wirzba, hep-ph 1103.3860 (DISCRETE 2010)

experiment: present limits: $BR(\eta \to 4\pi^0) \le 6.9 \times 10^{-7}$ $\eta \rightarrow 4\pi^0$: tiny background from direct π^0 production unique 8 photon signal Crystal Ball PRL 84 (00) 4802 close to n threshold $\text{BR}\,(\eta'\to 4\,\pi^0) \le 3.2\times 10^{-4}$ GAMS-47 1406.5057 [hep-ex]

CP test w B.M.K.Nefkens (Dul	ithout analog in K_L ma, 1994), Crystal Ball PRL 84 (00) 4802	sector: $\eta(\prime) \rightarrow 4\pi^0$
estimates: A.Kupsc, A.Wirzł	BR $(\eta \to 4\pi^0) \le 10^{-10}$ a, hep-ph 1103.3860 (DISCRETE 2010)	$BR(\eta' \to 4\pi^0) \le 10^{-8}$
experiment:	unique 8 photon signal	
	$\eta \rightarrow 4\pi^0$: tiny background fro close to η threshold	om direct π^0 production
present limits:	BR($\eta \to 4\pi^0$) $\le 6.9 \times 10^{-7}$	$BR(\eta' \to 4\pi^0) \le 3.2 \times 10^{-4}$
	Crystal Ball PRL 84 (00) 4802	GAMS-4π 1406.5057 [hep-ex]
		Detection at any level
	as yet highest sensitivity reached on any n decay mode!	above limits would signal CP violation
		from new sources!

damental discrete symmetries can be probed in n decays

Large data samples are available for analysis from WASA-at-COSY and from complementary facilities

More to come in future: results from analysis and data of even arger statistical accuracy

II SYMPOSIUM ON APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES September 24 - 27, 2014, Collegium Maius Jagiellonian University, Kraków, Poland

UPPSALA UNIVERSITET