Matter and the Universe

COSY: Achievements and Ramp-up Towards FAIR

Frank Goldenbaum, IKP, FZ-Jülich, Germany

INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES

This project is supported by the Foundation for Polish Science – MPD program, co-financed by the European Union within the European Regional Development Fund

FZJ: from COSY to HESR at FAIR

PoF 2: Hadron physics at COSY (ANKE, TOF, WASA and PAX) PoF 3: COSY required as essential **test facility** – and **EDM machine**

Introduction: Physics Case and Tools

COSY: Non-perturbative QCD in the (u,d,s) sector

Structure of hadrons

nucleon, hyperons, mesons

Dynamics & interactions

nucleon-nucleon, meson-nucleon, hyperon-nucleon meson-nucleus, medium effects

Symmetries and symmetry breaking

chiral symmetry isospin & charge symmetry in reactions discrete symmetries in meson decays

COSY (COoler SYnchrotron):

external and internal experiments, polarized beams & polarized targets

PAGE 3

COSY Facility

ANKE Result: Nucleon-Nucleon (NN) Scattering

Single polarized **pp** elastic scattering: analyzing power A_v

- **ANKE**: dedicated facility for forward region $(5^{\circ} 30^{\circ})$; precision data
- Significant change in quantitative description of short-distance NN interaction
- Ongoing: double polarized measurements (np system)

TOF Result: Hyperon Production

Production mechanism (nucleon resonances, hyperon polarization) Hyperon-nucleon interaction and $(p\Lambda - N\Sigma)$ channel coupling

- TOF: provides full phase space coverage
- Impact on nuclear strangeness production and hypernuclei
- Ongoing: spin-resolved hyperon-nucleon scattering lengths

WASA Result: Exotic NN Resonance? Dibaryon

ABC effect in double-pion fusion reactions

Isospin dependence (I = 0, 1)

New: impact on elastic np-scattering

- WASA: structure (at 2.37GeV, 70MeV width) in isoscalar (I=0) channel
- Origin of structure: 6 quark bound state? Quantum numbers: I(J^P)=0(3^+)
- Ongoing: Partial wave analysis (SAID), quantum numbers

Phys.Rev.Lett., 112, 202301 (2014) PhysRevC 90, 035204 (2014). CERN Courier.54 ,6, (2014)

PAX Result: Spin Filtering; Goal: Pol. Antiprotons

European Research Council

Advanced Grant

POLPBAR

erc

Polarization build-up by spin filtering in storage rings Tests with **protons at COSY**

New: low-ß section, intense polarized target, precision polarimetry

- PAX: spin filtering works and is well understood in NN scattering
- Preparations for spin-filtering with antiprotons at CERN/AD (or FAIR)
- Ongoing: longitudinal build-up with protons at COSY (Siberian snake needed)

COSY Facility: Developments Related to HESR

Barrier Bucket Cavity mean energy loss compensation

Pellet Target beam-target interaction

e-Cooler 100 kV

Stochastic Cooling (prototyp pick-up tank 1.5-15 GeV/c)

Residual Gas Profile Monitor

e-Cooler (2 MV; 2013)

Test bench for accelerator components and operation

Example: 2 MV Electron Cooler for HESR

Joint development with Budker Institute (BINP, Russia), **injection cooler** for HESR, milestone towards 8 MV cooler

Parameters demonstrated so far:

- Voltage up to 1.5 MV (5 bar SF6)
- Cooling at 900 kV / 300 mA (1.8 GeV p)

Electron cooling achieved for 1.8 GeV protons

• Ongoing: commissioning for full COSY energy range (3 GeV)

COSY Facility: Developments for PANDA

Pellet Target (in laboratory)

Pre-assembly of major PANDA components in Jülich

COSY Facility: User Activities for FAIR

PANDA:

- Straw-tube tracker Cracow, Frascati, Pavia, Ferrara, Bucharest, Jülich
- Micro-vertex detector Giessen, Turin, Jülich
- Calibration detector for luminosity monitor *Jülich, Lanzhou*
- Disk DIRC Erlangen, Tübingen, Giessen, Jülich
- Radiation hardness of high purity Ge-detector Mainz (HIM)

CBM/Hades:

• Tracking detectors, diamond detectors München, Frankfurt, Darmstadt, Kolkata, Wuppertal

NuSTAR:

• Cherenkov, Time Projection Chamber Giessen, Kyoto

COSY: Transition PoF2 → PoF3 (2015-2019)

Phase-out of hadron physics program at COSY Use of COSY as accelerator and detector test facility

Summary and Outlook

Successful physics program at COSY during PoF 2

spin physics and fundamental symmetries close cooperation with in-house theory group

COSY vital test facility for FAIR

accelerator and detector components and operation

COSY ideal starting place for EDM searches

(not subject of this presentation)

Spare slides...

COSY

COSY Accelerator

Energy range

0.045 – 2.8 GeV (p) 0.023 – 2.3 GeV (d) (momentum 3.7 GeV/c)

Cooling (transverse & longitudinal)

2 methods: electron, stochastic $\Delta p/p \le 5 \cdot 10^{-5}$

Polarization p, d beams & targets

Beams

internal, extracted

Experiments, detectors ANKE, TOF, WASA, PAX

~ 340 users, 15 countries

COSY Beam Parameter JÜLICH

beam quality:

without cooling: $\Delta p/p \sim 2 \cdot 10^{-4}$ electron cooling: $\Delta p/p \leq 5 \cdot 10^{-5}$ $p_p < 0.5 \text{ GeV/c}$ stochastic cooling: $\Delta p/p \leq 5 \cdot 10^{-5}$ $p_p > 1.5 \text{ GeV/c}$

 $\varepsilon = \pi \text{ mm mrad } 1 \text{mm} \emptyset \cdot 0, 18^{\circ}$

beam intensities (cooled):

protons, unpolarized: protons, polarized: deuterons, unpolarized: deuterons, polarized: 1.10¹¹ 1.10¹⁰ 1.10¹¹ 6.10⁹ (by stacking)

extracted beam:

 $10^5 \dots 10^9$ protons/s in spillslow extraction: $10 \text{ s} \dots > 10$ min spill, quasi-DC beam10(5) s inter-spill (un)cooledfast extraction: $2 \cdot 10^9$ protons in 200 ns, every 15 s

HESR Layout

Pre-Assembly of PANDA components in Jülich

- high rate in-beam tests of individual detector components in the COSY-TOF area
- Mechanical integration of "full" PANDA in the COSY test-hall
- Infrastructure available:
 - ✓ M&E Workshop capacity
 - ✓ staging space for detectors
 - ✓ (limited) clean room space
 - ✓ office space available

Transport to and setup in Darmstadt 2017

ANKE

ANKE Spectrometer: Apparatus

Main features:

- Excellent Kaon identification (Positive and Negative)
- > Di-proton ($\{pp\}_s$) selection by Forward Detector (FD)
- Low energy proton (spectator) detection (STT)
- Polarized (unpolarized) dense targets (PIT)
- Openable storage cell (SC)

ANKE: Scientific Program

Since 2005 ANKE has been equipped with a **Polarized Internal Target** (PIT) and embarked to measure the **spin** dependence of many polarized reactions

Nucleon-nucleon interaction

pp- and np-amplitudes, nuclear forces, di-proton system in ¹S₀-state {pp}_s

Meson prodution

NN π amplitudes (PWA), extension of ChPT to the NN \rightarrow NN π process via measuring all observables in pp \rightarrow {pp}_s π^0 and np \rightarrow {pp}_s π^-

Meson-nucleus interaction

 η -³He interaction (FSI), η -mesic ³He , precision η -mass determination

Strangeness degree of freedom

YN interaction, ΛN scattering lengths, separation of spin-singlet (a_s) and spin triplet (a_t) Λp production amplitudes, SU(3) symmetry

Summary of recent results: Nuclear Physics News (NuPECC, issue 3, 2013)

ANKE: Examples of Analyses

Frank Goldenbaum

pp elastic: recoil slow proton detection (STT)

ANKE: Scientific Output

50 scientific papers (since spin program started in 2005)

Topics:

•	NN-interaction	(HEPI Tbilisi, IKP)
•	Deuteron breakup at large momentum transfer	(JINR Dubna, IKP)
•	Complete measurement for NN \rightarrow NN π	(JINR, Erlangen, IKP)
•	High energy bremsstrahlung	(JINR, IKP)
•	Two-pion production	(JINR, Münster, IKP)
•	The η-meson production	(Münster, IKP)
•	Vector meson (ϕ , ω) production	(RCNP, PNPI Gatchina, IKP)
•	Medium modifications	(ITEP Moscow, IKP)
•	Kaon-pair production	(PNPI, IKP)
•	Hyperon production	(PNPI, IKP)

•

Very strong collaboration groups !

NN Scattering: Motivation (pp)

Data distribution plots (SAID)

NN Scattering: Motivation (pn)

Data distribution plots (SAID)

TOF

Fit of the Dalitz plot for 2.95 GeV/c (Isobar Model*)

Fit properties

 $p\Lambda - N\Sigma$ cusp as a resonance with a 30 MeV width

N*(1650) / N*(1720) ~ 2/1

- Fit of the Model to extract resonance strength
- Study at different beam momenta

* A. Sibirtsev et al, Eur. Phys. J. A27 (2006) 269

PAGE 30

Hyperon Production at 2.7 GeV/c

Production mechanism (nucleon resonances, hyperon polarization) Hyperon-nucleon interaction and $(p\Lambda - N\Sigma)$ channel coupling

p∧ Effective Scattering Length

Extraction of effective p∧ scattering length from final state enhancement in the p∧ invariant mass spectrum with known theoretical precision (method adopted from A.Gasparyan et al., Phys. Rev. C69, 034006 (2004))

Ongoing: Spin-resolved hyperon-nucleon scattering length

PAGE 32

Λ Polarization

A Polarization changes strongly between the two beam momenta
Ongoing: Theoretical description for understanding

PAX

PAX: Experimental setup for Spin-filtering

PAX: Theoretical predictions for \overline{p} polarization

PAGE 36

Frank Goldenbaum

PAX: Siberian snake for COSY

Spin filtering using a longitudinally polarized target $\sigma_{tot} = \sigma_0 + \sigma_1 \vec{P} \cdot \vec{Q} + \sigma_2 (\vec{P} \cdot \vec{k}) (\vec{Q} \cdot \vec{k})$

- Should allow for flexible use at two locations (ANKE and PAX)
- Fast ramping (< 30 s)
- Cryogen-free system

	B·dl (Tm)
$pn \rightarrow \{pp\}_s \pi^-$ at 353 MeV	3.329
PAX at COSY (140 MeV)	1.994
PAX at AD (500 MeV)	4.090
$T_{\rm max}$ at COSY (2.88 GeV)	13.887

PAX: Publications

F. Rathmann et al. Phys. Rev. Lett. 94, 014801 (2005) A Method to polarize stored antiprotons to a high degree V. Barone et al. (PAX collaboration), Proposal to FAIR QCD-PAC http://arxiv.org/abs/hep-ex/0505054 (2005) Antiproton-proton scattering experiments with polarization D. Oellers et al. Phys. Lett. B 674, 269 (2009) Polarizing a stored proton beam by spin flip? C. Barschel et al. (PAX collaboration), CERN-SPSC-2009-012 (2009) Measurement of the Spin-Dependence of the p anti-p Interaction at the AD-Ring P. Lenisa and F. Rathmann CERN Cour., **50N6**, 21 (2010) PAX promotes beams of polarized antiprotons W. Augustiniak et al. Phys. Lett. B, **718**, 64 (2012) Polarization of a stored beam by spin-filtering P. Lenisa and F. Rathmann Nucl. Phys. News 23, 27 (2012) Perspectives for polarized antiprotons

WASA

WASA: Setup

WASA: Physics Program

Symmetries and symmetry breaking in η decays chiral symmetry, C and CP tests

Structure of mesons

transition form factors in π,η and ω Dalitz decays

Physics beyond the Standard Model dark photon search in $\pi^0 \rightarrow e^+e^-\gamma$

Nucleon-nucleon interaction, meson-nucleon interaction ABC effect in pN \rightarrow d $\pi\pi$, pd \rightarrow ³He $\pi\pi$, dd \rightarrow ⁴He $\pi\pi$

Quark mass effects

Charge symmetry breaking in dd \rightarrow ^4He π^0

Meson-nucleus interactions

 η -mesic ³He and ⁴He

WASA: ABC Resonance

PAGE 42

Frank Goldenbaum

COSY: Achievements and Ramp-up Towards FAIR

WASA: References

Measurement of the pn \rightarrow pp $\pi^0\pi^-$ reaction in search for the recently observed resonance structure in $d\pi^0\pi^0$ and $d\pi^+\pi^-$ systems Phys. Rev. C 88 (2013) 055208) Search for a dark photon in the $\pi^0 \rightarrow e^+e^-\gamma$ decay *Phys.Lett. B726 (2013) 187-193* Investigation of the dd \rightarrow ³He n π^0 reaction with the FZ Jülich WASA-at-COSY facility Phys. Rev. C 88 (2013) 014004 Isospin Decomposition of the Basic Double-Pionic Fusion in the region of the ABC Effect Phys.Lett. B721 (2013) 229 Search for eta-mesic ⁴He with the WASA-at-COSY detector Phys.Rev. C87 (2013) 035204 Abashian-Booth-Crowe resonance structure in the double pionic fusion to ⁴He Phys.Rev. C86 (2012) 032201 Exclusive Measurement of the $\eta \rightarrow \pi^+\pi^-$ gamma Decay Phys.Lett. B707 (2012) 243-249 Experimental Investigation of $\pi^0\pi^0$ Production in Proton-Proton Collisions at $T_{p} = 1400 \text{ MeV}$ Phys.Lett. B706 (2012) 256-262 ABC Effect in Basic Double-Pionic Fusion --- Observation of a new resonance? Phys.Rev.Lett. 106 (2011) 242302 Measurement of the $\eta \rightarrow 3\pi^0$ Dalitz Plot Distribution with the WASA Detector at COSY Phys.Lett. B677 (2009) 24-29

Calibration detector for Luminosity monitor

Calibration Detector for luminosity monitor at HESR

Goal is to determine parameter σ_{tot} , ρ and b for PANDA luminosity monitor

- Forward tracking detector to measure scattered beam particles
- Recoil detector to measure energy and angle of recoil protons
- Large t range,0.0008-0.1 GeV², measurement
 - Coincidence for background suppression

Antiproton-proton elastic scattering measurement

Large t-range measurement at HESR?

• Forward scattering measurement

(e.g. polar angle 4.6-8 mrad ~ t range of 0.0008-0.0025 GeV²@6.2GeV/c)

Recoils measurement
 (e.g. recoil angle 1.0° -11.5° ~ t range of 0.0008-0.1 GeV²@6.2GeV/c)

Dedicated day-one experiment at HESR

Matter and the Universe, Topic 2, FZJ

Standing

COSY is *the* storage ring facility for polarized beams and hadron physics worldwide

Balance

Operation of COSY and construction of HESR was mastered during PoF 2

Potential

The physics case for charged particle EDM searches is outstanding ("must-do" experiment)

IKP scientists have widely acknowledged experience in

- storage rings
- polarized beams
- polarized targets
- spin physics

Building of HESR and work for the EDM project can well be handled during PoF 3

COSY is the *ideal starting point* for the storage ring EDM project; FZJ provides an excellent environment; staging is the approach of choice