

National Centre for Nuclear Research Department of Nuclear Techniques and Equipment Radiation Detectors Division (TJ3) ul. A. Sołtana 7, 05-400 Otwock-Świerk, Poland

Optimization of Detectors for Time-of-Flight PET

Tomasz Szczęśniak,

Marek Moszyński, Martyna Grodzicka

Symposium on PET Kraków, 20.09.2013

Possible improvements of the PET image

Increased radiopharmaceutical activity

- much higher radiation exposure of the patients
- maximum dose rates must be accepted by medical centers
- Longer scanning time
- negative influence on the patient's psychological condition
- harder to realize stable patient position during PET and CT scan
- decrease of the total number of PET patients and higher costs

More efficient scintillation detectors

 the presently used scintillators BGO (30mm) and LSO (40mm) assure about 90% detection efficiency for 511 keV gamma rays

Extended energy spectrum below the photopeak

 2 times higher sensitivity, but the Compton scattered photons destroy the image quality

Increased solid angle – 3D PET

 sensitivity to true coincidences increased by a factor of 5, but followed by 3 to 4 times larger acceptance of the scattered events

Time-of-Flight

Time-of-Flight PET

Problems:

- Gamma quanta speed is a speed of light
- Spatial resolution of a PET scanner is approximately 5 mm
- For gamma quanta this 5 mm corresponds to 17 ps
- 5 mm spatial resolution requires scintillation detectors with timing resolution of 30 ps
- Timing resolution of the best presently known PET detectors is at the level of only 500 ps

Benefits of TOF PET

500 ps is only 7.5 cm but allows:

 Reduction of statistical noise (f – noise variance reduction factor, D – emission source size):

$$f = \frac{D}{\Delta x} = \frac{2D}{c\Delta t}$$

 Reduced random event rate (NECR – Noise Equivalent Count Rate)

$$R = 2R_1R_2\Delta T \qquad NECR = \frac{T^2}{T+S+2R}$$

- Reduced axial blurring
- Possibility of a simultaneous emission (anihilation quanta) and transmission (attenuation correction) scan

20-09-2013

Examples of PET and TOF PET images

PET: Impaired Image Quality in Larger Patients

Slim Patient

Large Patient

20-09-2013

Block-Detector design

Block-Detector:

- Matrix of <u>scintillators</u> dozens of pixels (number and size defined by the crystal type, 64 for BGO, 169 for LSO)
 - Light readout by means of several
 - photodetectors (in most cases 4 photomultipiers)
- Interaction point calculated using Anger logic

Scintillators possible to use in PET

Scintillator	Light output [ph/MeV]	Decay constant [ns]	Emission wavelength [nm]	Density [g/cm ³]	Effective atomic number	Index of refraction	Hygroscopic
NaI:Tl	38 000	230	410	3.7	51	1.85	yes
CsI:Tl	66 000	900	550	4.5	52	1.80	slightly
BGO	8 000	300	480	7.1	75	2.15	no
LSO/LYSO	30 000	40	420	7.4	66	1.82	no
BaF ₂ fast/slow	2000/10000	0.6/620	220/310	4.9	53	1.51	slightly
LaBr ₃	75 000	16	380	5.1	45	1.9	yes
GSO	8 000	60	440	6.7	59	1.85	no
LGSO	23 000	40	420	7.5	63	1.82	no
LuAP	12 000	18	365	8.3	64.9	1.94	no
YAP	17 000	30	350	5.5	33.5	1.95	no

A photomultiplier (PMT)

Fig. 1. An X-ray image of Photonis XP2020 timing photomultiplier.

20-09-2013

Major photodetector properties

The final result of timing performance is a composition of three major parameters of a photodetector:

- <u>number of photoelectrons</u> released from the photocathode (which is a function of the photocathode sensitivity) and photoelectron collection efficiency on the first dynode
- the transit <u>time jitter</u> of electrons traveling from the photocathode to the anode
- **<u>rise time</u>** of the anode pulse

Timing dependence on the number of photoelectrons

Measured time resolution versus number of photoelectrons (Nphe) collected in the PMT

Measurements done for the 10x10x5 mm³ LSO and 4x4x20 mm³ LSO crystals

The linear dependence of the time resolution on reversed square root of the number of photoelectrons shows the importance of high quantum efficiency of the photocathode

Evolution of the blue corning sensitivity versus pumping process date

An improvement of the photocathode QE in the XP2020 family. We have tested XP20D0 and XP20E0 with the blue sensitivity close to 14 uA/ImF (QE up to 35%). The best values - above 40%.

Photoelectron collection efficiency

Fast tubes are optimized for collecting photoelectrons from the whole of the photocathode surface that arrive almost simultaneously on the first dynode surface.

Metal channel dynodes:

- position sensitive PMTs:
- low crosstalk
- photoelectron collection efficiency of about 60 – 70%, limited by the geometrical open area of dynodes

Figure 23 : Cross Section of Metal Channel Dynode with Electron Trajectories

Dependence on the anode pulse characteristics

Time Resolution dependence on the LE threshold for PMTs representing different constructions

Only in the case of photomultipliers optimized for timing measurements like XP20D0 the lowest threshold could be achieved leading to the best time resolution

Screening grid at the anode in Photonis XP20D0

Commonly used anode construction – anode built as a grid inside the last dynode.

Adventages:

- Low time-of-flight of electrons from the last dynode to the anode
- Good charge collection at the anode

Disadvantage – two components:

- Main one due to the collection of the electrons from the last dynode
- Parasitic (shifted in time) induced in the anode by the electrons travelling from the penultimate dynode to the last dynode

Solution – SCREENING GRID

Fig. 2. Geometry of the last dynodes and the anode in a typical linear-focused photomultiplier. Note that the anode is built as a grid inside the last dynode. The position of the screening grid is also shown.

Timing photomultipliers Photonis XP20D0 and Hamamatsu R5320

a) corrected for the contribution of the BaF_2 reference detector of 128 ps.

b) photoelectron number for 511 keV

20-09-2013

Dependence on the time jitter

PMT	Phe number for 511 keV [phe]	Time resolution at FWHM ^{a)} , Δt [ps]	∆t√N/r [ps√phe] x10 ³	Time jitter in center [ps]	
XP2882 SN029	3100 ± 100	489 ± 24	25.9 ± 1.3	1560 ± 80	2
XP31X1	3100 ± 100	287 ± 14	15.5 ± 0.8	520 ± 30	he ^{1/2}]
XP31X2	2600 ± 100	254 ± 13	12.6 ± 0.6	450 ± 20	d _* sd]
XP3060 SN193	3300 ± 100	200 ± 10	11.2 ± 0.6	440 ± 20	Les.
XP3060 SN018	2700 ± 100	205 ± 10	10.4 ± 0.5	340 ± 20	Time
XP1020 SN1021	2500 ± 100	212 ± 11	10.3 ± 0.5	380 ± 20	lized
XP20G0 SN162	2900 ± 100	332 ± 17	16.8 ± 0.8	990 ± 50	orma
XP2020 SN25377	3200 ± 100	223 ± 11	12.0 ± 0.6	490 ± 20	z
XP20D0 SN2026	4100 ± 100	166 ± 8	10.1 ± 0.5	490 ± 20	
XP20D0 SN2083	3200 ± 100	173 ± 9	9.2 ± 0.5	470 ± 20	
XP20D0 SN2087	3600 ± 100	169 ± 8	9.7 ± 0.5	490 ± 20	
XP1485 SN1789	3300 ± 100	324 ± 16	17.1 ± 0.9	1300 ± 70	
R5320 BA0091	2800 ± 100	173 ± 9	8.7 ± 0.4	140 ± 7	

Normalization: $\Delta T = \Delta t \sqrt{N} / r \cdot 10^3$ Δt – measured time resolution, N – number of photoelectrons for 511keV,

20-09-2013

Simultaneous readout of several **PMTs**

a) corrected for the contribution of the BaF₂ reference detector of 128 ± 4 ps

T. Szczęśniak, Optimization of Detectors for TOF PET

Channel number (1ch = 11.65 ps)

Detector based on a monolithic scintillator and multi-channel PMT

Measurements made with 20x20x20 mm LYSO

рмт .	Time resolution at FWHM, ∆t [ps]		Nphe/MeV	Nphe for 511keV,	∆t√N/√ENF	
	Measured	Corrected ^{a)}	[phe/MeV]	N [phe]	[ps√phe] x10 ³	
H8711	301 ± 9	272 ± 10	4000 ± 100	2100 ± 100	11.6 ± 0.5	
XP20D0	260 ± 8	226 ± 9	6000 ± 200	3000 ± 100	12.1 ± 0.5	

a) corrected for the contribution of the BaF2 reference detector of 128 ± 4 ps

Measurements made with 10x10x5 mm LSO

Time resolution	at FWHM, ∆t [ps]	Nphe/MeV	/MeV Nphe for 511keV, ∆t√N/√ENF	
Measured	Corrected ^{a)}	[phe/MeV]	N [phe]	[ps√phe] x10 ³
235 ± 7	198 ± 9	5900 ± 200	3000 ± 100	10.1 ± 0.5
237 ± 7	199 ± 9	6300 ± 200	3200 ± 100	10.3 ± 0.5
247 ± 7	211 ± 9	4900 ± 100	2500 ± 100	10.3 ± 0.5
238 ± 7	200 ± 9	6400 ± 200	3300 ± 100	11.2 ± 0.5
210 ± 6	166 ± 9	8100 ± 200	4100 ± 100	10.4 ± 0.5
	Time resolution Measured 235 ± 7 237 ± 7 247 ± 7 238 ± 7 210 ± 6	Time resolution at FWHM, Δt [ps]MeasuredCorrected ^a)235 ± 7198 ± 9237 ± 7199 ± 9247 ± 7211 ± 9238 ± 7200 ± 9210 ± 6166 ± 9	$\begin{array}{c c} \hline \mbox{Time resolution at FWHM, Δt [ps]} & \mbox{Nphe/MeV} \\ \hline \mbox{Measured} & \mbox{Corrected}^{a)} & \mbox{[phe/MeV]} \\ \hline \mbox{235 \pm 7} & \mbox{198 \pm 9} & \mbox{5900 \pm 200} \\ \mbox{237 \pm 7} & \mbox{199 \pm 9} & \mbox{6300 \pm 200} \\ \mbox{247 \pm 7} & \mbox{211 \pm 9} & \mbox{4900 \pm 100} \\ \mbox{238 \pm 7} & \mbox{200 \pm 9} & \mbox{6400 \pm 200} \\ \mbox{210 \pm 6} & \mbox{166 \pm 9} & \mbox{8100 \pm 200} \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

) corrected for the contribution of the BaF₂ reference detector of 128 \pm 4 p

White Sens.	Blue Sens.	QE [%] at	Uniformity
[uA/lm]	[uA/lm]	350nm	Max/Min
117 15.5		43	1.5
Photocathode	Window	Structure	Stages
Bialkali Borosolicate Glass		Metal Channel Dynodes	12

ZB0730

Experimental results did not show adventages of a monolithic crystal over the pixelated block-detector.

20-09-2013

Type **H8711-**

200MOD

LSO scintillators co-doped with Ca

5 samples of LSO ($Lu_2SiO_5:Ce$) with different Ca co-doping

Crystal	Nphe/MeV [phe/MeV]
LSO2003 0.0% Ca	8100 ± 200
LSO 0.0% Ca	5700 ± 200
LSO 0.1% Ca	7800 ± 200
LSO 0.2% Ca	6900 ± 200
LSO 0.3% Ca	5900 ± 200
LSO 0.4% Ca	6700 ± 200

20-09-2013

LSO scintillators co-doped with Ca

Crystel	lime resolution	at ⊩wHM, ∆t [ps]	Nphe for 511keV, Δt√N/√ENF		
Crystal	Measured Corrected ^{a)}		N [phe]	[ps√phe] x10 ³	
LSO 0.0% 'selected' ^{b)}	210 ± 6	166 ± 9	4100 ± 100	10.2 ± 0.5	
LSO 0.0% Ca	224 ± 7	173 ± 9	2900 ± 100	8.9 ± 0.5	
LSO 0.1% Ca	201 ± 6	142 ± 9	4000 ± 100	8.5 ± 0.6	
LSO 0.2% Ca	204 ± 6	145 ± 9	3500 ± 100	8.2 ± 0.5	
LSO 0.3% Ca	202 ± 6	143 ± 9	3000 ± 100	7.5 ± 0.5	
LSO 0.4% Ca	197 ± 6	136 ± 9	3400 ± 100	7.6 ± 0.5	

a) corrected for the contribution of the BaF_ reference detector of 143 ±4 ps b) following chapter 8

- All the tested Ca co-doped samples showed improved timing resolution
- Optimal co-doping is 0.1 % due to improved light output and also timing and energy resolution

A silicon photomultiplier

Silicon Photomultiplier (SiPM) or Multi-Pixel Photon Counter (MPPC)

- photodetector based on a matrix of Avalanche Photodiodes (APD cells) working in a Geiger mode ("binary" response)
- each APD-cell generates signal after detection of a single photon
- sum of the signals of all APD-cells is the SiPM output signal, proportional to the number of incident photons
- **Properties:** gain: $10^5 10^6$, insensitivity to magnetic fields, single photon detection capability, bias voltage below 100V, small size

Timing resolution of SiPMs

Experiments made with LSO or LFS and Hamamatsu MPPC S10362-33-050C

Туре	S10362-33-050C		
Serial No.	22		
Active area	3×3 mm ²		
Number of pixels	3600		
Pixel size	50x50 μm		
Fill factor	61.5 %		
Gain / bias voltage	7.51x10 ⁵ / 68.66 V		
Spectral resp. range	270 -900 nm		
Q.E.	70% at 400 nm		
Dark count	2.38 Mcts/s		
Capacitance	320 pF		

Photon Detecion Efficiency:

 $PDE = QE \cdot FF \cdot THR$

- Silicon photomultipliers are the real alternative for classic PMTs for application in PET and TOF PET
- GE Healthcare showed SiPM based TOF PET system with timing resolution below 400ps

Conclusions

- The obtained time resolution at the level of 170 ps (or better) with various LSO based scintillation detectors shows that this type of a detector is presently the best proposition for TOF PET.
- The optimization of the PMT-based detetectors follows the predictions of the Hyman theory and hence is close to the possible limits.
- Timing resolution in the case of LSO-like scintillators is more dependent on the number of photoelectrons than on the time jitter.
- Timing resolution improvement in a block-detector can be achieved by common light readout of all photodetectors during a single event.
- Results obtained with a monolithic crystal and position sensitive photomultiplier did not show advantages over classic, pixelated block-detector.
- Experiments made with a new type of LSO crystal, co-doped with Ca showed that this type of modification leads to improvement of the timing properties of these scintillators.
- Measurements of the time resolution with silicon photomultipliers strongly suggest that this type of a photodetector can succesfuly replace classic photomultipliers.