Status of the laboratory studies of J-PET prototype: light signal velocities, single photoelectron signals and measurement campaigns

Symposium on Positron Emission Tomography 19th – 22nd September

Szymon Niedźwiecki Jagiellonian University, Nuclear Physics Division

Plan of presentation

Description of experimental setup
 Photomultiplier callibration
 Experimental campaigns
 Light velocity for different scintillator shapes
 Preliminary results from Strip Scan

Description of experimental setup

Scheme of the experimental setup

Description of experimental setup

Description of experimental setup

Degrees of freedom

- Two sources
- Source position
- Strip shapes
- Strip covering
- Photomultiplier type
- Photomultiplier gain

Radioactive sources

Germanium 68:

- annihilation gamma quanta
- very small background
- short lifetime
 Sodium 22:
- annihilation gamma quanta
- background from neonium deexcitation
- longer lifetime

Radioactive sources

Simulation of compton spectrum

Experiment

Source position

Determination of source position along strip is equal to 0.1mm

Strip shapes

- Square
- Small rod
- Triangle
- Big rod
- Hexagonal
- Rectangular

Strip covering

- Tyvek
- Aluminium
- Mylar
- Mirrors
- Paint

Photomultiplier type

Туре	Rise time [ns]	Transit time [ns]	
R4998	0.7	10	
R5320	0.7	10	
R9800	1.0	11	
Туре	Transit time spread (FWHM) [ns]	Spectral response range [nm]	
Type R4998	Transit time spread (FWHM) [ns] 0.16	Spectral response range [nm] 300-650	
Type R4998 R5320	Transit time spread (FWHM) [ns] 0.16 0.16	Spectral response range [nm] 300-650 160-650	

Photomultiplier Gain

Photomultiplier callibration

Photomultiplier callibration

Experimental setup

 Signals from left PM are aquired only when another signal appears on right PM

Single photoelectron signals

Single photoelectron spectrum

Photomultiplier Gain

Estimation of light reaching photocathode

- Scintillator produces 10 photons / keV deposited
- Mean value of compton spectrum is equal to ~200 keV
- Refraction index of scintillator is about 1.5
- Brewster angle is equal to 33.69°
- So ~63% of photons remain inside scintillator

This gives about 600 photons per photomultiplier

Experimental campaigns

Experimental campaigns

Covering measurements

- scintillator covered with different materials
- radioactive source placed in collimator and moved along scintillator strip in constant intervals
- Distance from 28.5cm to 0.6cm (along strip) with 9mm steps
- Each position with ~6.5 kev

Tyvek chosen as covering

Results from covering measurements

Shape measurements

- different transverse shapes of scintillators tested
- radioactive source placed in collimator and moved along scintillator strip in constant intervals
- five positions along strip were measured
- each position with ~6.5 kev

data is still being analysed preliminary results will be presented

Preliminary results from shape measurements

Precise scan campaings

- Scintillator strip scanned with smaller interval with each campaign
- Leads to many improvements of experimental setup
- Data will be used for reconstruction algorithm and simulations

Most recent precise scan campaign

- rectangular 30cm EJ230 strip was scanned with 3mm intervals
- 10k signals from both PMs on each were gathered

data recently collected only preliminary results will be presented

Light velocity for different scintillator shapes

Dependence of scintilator shape on light velocities

Aquired signals

Each signal consists of about 200 points Time difference between signals was measured at 100mV

Time difference distributions

В

Mean value vs position

Light velocity

Shape	Velocity [cm/ns]	Dimensions [cm X cm X cm]	
Small rod	9.12 ± 0.04	1 cm dia x 50 cm lenght	
Big rod	9.46 ± 0.04	1.6 cm dia x 50 cm lenght	
Triangle	10.89 ± 0.05	1.7 cm side x 50 cm lenght	
Square	11.20 ± 0.05	1.4 cm side x 50 cm lenght	
Hex	11.57 ± 0.06	0.9 cm side x 50 cm lenght	
Rectangular	13.88 ± 0.04	0.5 cm x 1.9 cm x 30 cm	
19 mm	14 mm	16 mm	17 mm

9 mm

(¥

Preliminary results from shape measurements

Preliminary results from Strip Scan

Preliminary results from Strip Scan

- Two R5320 PMs
 were used
- Scan of 30cm strip with 3mm interval
- 10k signals/per position from both sides collected

Sum of area spectrum

Energy resolution

Charge vs position spectra

Threshold and fraction discriminators

- Constant threshold discriminator (left picture) suffers from walk effect
- Constant fraction discriminator does not cut smaller signals

Precision vs fraction

Precision vs threshold

Future plans

- Two strips
 measurements
- Barrel assembling

Two strips measurement

- Signals from four PMs aquired on the scope
- Experimental data for reconstruction group
- Gaining experience neccesary for barrel assembling

Barrel assembling

Summary

- Preliminary results of area comparison for different shapes indicate that hex shape should be the best choice
- Yet light velocities for different shapes indicate that small rod shape is the best choice
- Time resolution equal to ~160ps was obtained with single threshold discrimination
- Estimated energy resolution is ~10% or better

Thank you for your attention