Status of the laboratory studies of J-PET prototype: light signal velocities, single photoelectron signals and measurement campaigns

Symposium on Positron Emission Tomography 19th - 22nd September

Szymon Niedźwiecki
Jagiellonian University, Nuclear Physics Division

Plan of presentation

1. Description of experimental setup
2. Photomultiplier callibration
3. Experimental campaigns
4. Light velocity for different scintillator shapes
5. Preliminary results from Strip Scan

Description of experimental setup

Scheme of the experimental setup

Description of experimental setup

Description of experimental setup

Degrees of freedom

- Two sources
- Source position
- Strip shapes
- Strip covering
- Photomultiplier type
- Photomultiplier gain

Radioactive sources

Germanium 68:

- annihilation gamma quanta
- very small background
- short lifetime

Sodium 22:

- annihilation gamma quanta
- background from
neonium deexcitation
- longer lifetime

Radioactive sources

Simulation of compton spectrum

Experiment

Source position

Determination of source position along strip is equal to 0.1 mm

Strip shapes

- Square
- Small rod
- Triangle
- Big rod
- Hexagonal
- Rectangular

Strip covering

- Tyvek
- Aluminium
- Mylar
- Mirrors
- Paint

Photomultiplier type

Type	Rise time [ns]	Transit time [ns]
R4998	0.7	10
R5320	0.7	10
R9800	1.0	11
Type	Transit time spread (FWHM) $[$ ns] $]$	Spectral response range [nm]
R4998	0.16	$300-650$
R5320	0.16	$160-650$
R9800	0.27	$300-650$

Photomultiplier Gain

Photomultiplier callibration

Photomultiplier callibration

Experimental setup

- Signals from left PM are aquired only when another signal appears on right PM

Single photoelectron signals

Single photoelectron spectrum

Photomultiplier Gain

Estimation of light reaching photocathode

- Scintillator produces 10 photons / keV deposited
- Mean value of compton spectrum is equal to $\sim 200 \mathrm{keV}$
- Refraction index of scintillator is about 1.5
- Brewster angle is equal to 33.69°
- So $\sim 63 \%$ of photons remain inside scintillator

- This gives about 600 photons per photomultiplier

Experimental campaigns

Experimental campaigns

Three types:

1. Shape measurements
2. Covering measurements
3. Precise scans

Covering measurements

- scintillator covered with different materials
- radioactive source placed in collimator and moved along scintillator strip in constant intervals
- Distance from 28.5 cm to 0.6 cm (along strip) with 9 mm steps
- Each position with $\sim 6.5 \mathrm{kev}$

Tyvek chosen as covering

Results from covering measurements

Shape measurements

- different transverse shapes of scintillators tested
- radioactive source placed in collimator and moved along scintillator strip in constant intervals
- five positions along strip were measured
- each position with $\sim 6.5 \mathrm{kev}$
data is still being analysed preliminary results will be presented

Preliminary results from shape measurements

Precise scan campaings

- Scintillator strip scanned with smaller interval with each campaign
- Leads to many improvements of experimental setup
- Data will be used for reconstruction algorithm
 and simulations

Most recent precise scan campaign

- rectangular 30cm EJ230 strip was scanned with 3mm intervals
- 10k signals from both PMs on each were gathered
data recently collected only preliminary results will be presented

Light velocity for different scintillator shapes

Dependence of scintilator shape on light velocities

$$
\Delta t^{e x p}=t_{2}^{e x p}-t_{1}^{e x p}=\frac{L-2 x}{v_{e f f}}
$$

Aquired signals

Each signal consists of about 200 points

Time difference between signals was measured at 100 mV

Time difference distributions

Mean value vs position

Light velocity

Shape	Velocity $[\mathrm{cm} / \mathbf{n s}]$	Dimensions [cm $\mathbf{X ~ c m ~ X ~ c m}]$
Small rod	9.12 ± 0.04	1 cm dia $\times 50 \mathrm{~cm}$ lenght
Big rod	9.46 ± 0.04	1.6 cm dia $\times 50 \mathrm{~cm}$ lenght
Triangle	10.89 ± 0.05	1.7 cm side $\times 50 \mathrm{~cm}$ lenght
Square	11.20 ± 0.05	1.4 cm side $\times 50 \mathrm{~cm}$ lenght
Hex	11.57 ± 0.06	0.9 cm side $\times 50 \mathrm{~cm}$ lenght
Rectangular	13.88 ± 0.04	$0.5 \mathrm{~cm} \times 1.9 \mathrm{~cm} \times 30 \mathrm{~cm}$

Preliminary results from shape measurements

Preliminary results from Strip Scan

Preliminary results from Strip Scan

- Two R5320 PMs were used
- Scan of 30 cm strip with 3 mm interval
- 10k signals/per position from both sides collected

Sum of area spectrum

Energy resolution

Simulation of
compton spectrum with 10% smearing

Experiment

Charge vs position spectra

Threshold and fraction discriminators

- Constant threshold discriminator (left picture) suffers from walk effect
- Constant fraction discriminator does not cut smaller signals

Precision vs fraction

50\% fraction

10\% fraction

Precision vs threshold

250 mV threshold

50 mV threshold

Future plans

Two strips measurement

- Signals from four PMs aquired on the scope
- Experimental data for reconstruction group
- Gaining experience neccesary for barrel assembling

Barrel assembling

Summary

- Preliminary results of area comparison for different shapes indicate that hex shape should be the best choice
- Yet light velocities for different shapes indicate that small rod shape is the best choice
- Time resolution equal to ~ 160 ps was obtained with single threshold discrimination
- Estimated energy resolution is $\sim 10 \%$ or better

Thank you for your attention

