

A novel method of measurement of time and amplitude of analog signals based solely on FPGA units

M.Palka et. al.

Symposium on Positron Emission Tomography September 19th - 22nd 2013, Jagiellonian University, Kraków, Poland

- Basic requirments for the front end electronics
 - Induced jitter as low as possible <20ps,
 - Measurment of negative signals up to 10V,
 - Possibility of charge measurment discrmination of the signal (ToT) or charge to width circuit,
 - Signal preparation for TDC (time to digital converter) discrimination of the signal.

Requirements for the J-PET FEE

C Ugur, E Bayer, N Kurz and M Traxler; "A 16 channel high resolution (<11 ps RMS) Time-to-Digital Converter in a Field Programmable Gate Array, Topical Workshop on Electronics for Particle Physics 2011 (TWEPP-11)

FPGA-TDC

Time walk – can be compansated with charge to width corrections

Time over Threshold (ToT) or direct charge measurment

What are the intrinsic problems

ToT of one end of photomultiplier (second ToT is constant)

Time walk – can be compansated with charge to width corrections

Time over Threshold (ToT) or direct charge measurment

How to correct time measurments

Measuring with several thresholds and fitting a curve to get start point (red line) or charge (fitting full signal)

How to improve precision of time measurment

LVDS buffer is used for differential digital signals (P,N). If P>N than it gives logical '1' otherwise '0'.

Why not to use it as a comparator ?

New front end – a mixture of digital and analog part

Checking LVDS buffer (just a beginning ...)

- Board produced and has all basic functionality (FPGA programming etc.)
- configuration loaded via network, data transfer implemented (G.Korcyl)
- TDC firmware provided 256 high precision TDC channels (~10ps RMS) (C. Ugur)

TRB3*

*"A compact system for high precision time measurements (< 14 ps RMS) and integrated data acquisition for a large number of channels" M Traxler, E Bayer, M Kajetanowicz, G Korcyl, L Maier, J Michel, M Palka and C Ugur, M Traxler et al 2011 JINST 6 C12004

New front end – as simple as possible

- 16 input channels
- Directly attached to the TRB3 (built at GSI Darmstadt, Germany)
- No need for external power supply - powered from TRB3
- Each splitted channel has high precision adjustable threshold
- Cost 16 channels ~70EU
- Only two supply voltages (+3,+5V)
- ~1,5W per input channel
- small form factor

New front end - prototype

Built FEE induce only negligible jitter. (within some condions*) Measured for different threshold levels and fast signals (2ns width).

*Resolution depends on signal width (B), difference between threshold and amplitude (A) and slopes

New front end – first results

- Prototype with 16 input channels has been built,
- First results are promising,
- There were bugs on the PCB board new version is required (small changes)
- Amount of components should be reduced
- All functinality is functioning corectly (thresholds, precision ...)
- New PCB is ready for production
- More tests are required...

Summary & Outlook