Simulation of gamma quanta scattering in organic strip scintillator

Konrad Szymański

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Cracow

September 22, 2013

Contents

- Simulation description
 - Algorithm
 - Unit tests
- Results
 - Correlations of deposited energy, simulation times and positions of interactions

Contents

- Simulation description
 - Algorithm
 - Unit tests
- Results
 - Correlations of deposited energy, simulation times and positions of interactions

Input data

- Scintillator description: dimensions of cuboid, attenuation constant for gamma quanta of energy $m_e c^2 \approx 511 \text{ keV}$
- Gamma quanta beam description: initial position, energy, momentum direction
- Number of events, maximum number of interactions (to ensure algorithm stops)

Assumptions

- Rayleigh scattering is neglegible much lower cross section in interesting energy range
- Photoelectric effect is neglegible it has infulence when energy is ≤50 keV. 50 keV energy could be achieved at least after fifth interaction (initial energy = 511 keV)
- Gamma quanta speed = c
- Scintillator has convex shape

Cross sections of interactions of gamma quanta with carbon

Algorithm outline I

```
N — number of events
```

k — maximum number of interactions within one event

```
while current number of events < N do
  position ← initial position
  direction ← initial direction
  energy ← initial energy
  while current number of interactions \leq k do
     \lambda \leftarrow n_e \cdot \text{total cross section}
     length ← random value of exponential distribution
     \rho(x>0)=\lambda \exp(-x\lambda)
     position ← position + direction · length
     if position not in scintillator then
       end event
```

Algorithm outline II

end if angle ← random angle of Klein-Nishina distribution rotate direction in calculated angle write down position, deposited energy, time end while

Contents

- Simulation description
 - Algorithm
 - Unit tests
- 2 Results
 - Correlations of deposited energy, simulation times and positions of interactions

Total cross section test for energy $1 m_e$

Angular distribution check for energy $1m_e$

Angular distribution check for energy 0.3456 m_e

Angular distribution check for energy 0.01 m_e

Contents

- Simulation description
 - Algorithm
 - Unit tests
- 2 Results
 - Correlations of deposited energy, simulation times and positions of interactions

Conditions

- Scintillator's dimensions: 2000cm × 0.5 cm × 2 cm
- Initial point on center of top surface, direction z-axis
- Initial energy m_ec²
- Maximum number of interactions 1000
- Number of events 10⁶
- Attenuation constant for gamma quantum of energy $m_e c^2$ — $(10 \, \text{cm})^{-1}$

Conditions depiction

Higher order interactions frequency

Order	Frequency	Number of events
1	100 %	1000000
2	7.60 %	76013
3	0.589 %	5899
4	0.0508 %	508
5	0.00460 %	46
6	0.0002 %	2

It is acceptable to neglects Rayleigh scattering and photoelectric effect.

E-t histogram — first order interactions

E-t histogram — higher order interactions

E-z histogram — first order interactions

E-z histogram — higher order interactions

E-r histogram

Summary

- Only first two interactions in each event matter
- In big part of first-order interactions large energy is deposited, while in higher order deposited energy is small.
- Higher order interactions are close to the beam axis.

Bibliography

NIST XCOM

Photon cross section database

http://physics.nist.gov/PhysRefData/Xcom/
Text/intro.html