Studies on the Cherenkov Effect for Improved Time Resolution of TOF-PET using digital SiPM

S. E. Brunner

Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences & Faculty of Physics, Vienna University of Technology

Outline

- **Motivation**: time-of-flight positron emission tomography
- Fast photon detection: digital SiPM
- Factors influencing the time resolution of scintillators
- Improving the time resolution of scintillators using the **Cherenkov effect**
 - **Simulation** investigations
 - **Proof of principle** measurements
 - Comparing Cherenkov radiators scintillators

Motivation

Fast particle/gamma detection is applied in many research fields:

- Material research (positron annihilation life time spectroscopy)
- Particle ID (time of flight detectors in high energy physics)

• ...

Main motivation:

Time-of-Flight Positron Emission Tomography (TOF-PET)

- TOF for PET allows to decrease the SNR of reconstructed PET pictures
- Dependent on the time resolution of the PET detectors

Karp et al., JNM, 49-3 (2008) pp.462-470

- Radiotracer (e.g. sugar + e⁺ emitter) injected into patient
- Tracer accumulates at region of interest (e.g. metabolic tissue)
- e⁺ annihilates with e⁻ of tissue
- Emission of two annihilation photon with 511keV at rel. angle of 180°
- The two photons are detected by a ring of detectors (within coinc. time window)
- A LOR is drawn between the responding detectors
- Statistics → Image reconstruction

Annihilation probability		
Annihilat	ion probability equally distributed a	long LOR

- Radiotracer (e.g. sugar + e⁺ emitter) injected into patient
- Tracer accumulates at region of interest (e.g. metabolic tissue)
- e⁺ annihilates with e⁻ of tissue
- Emission of two annihilation photon with 511keV at rel. angle of 180°
- The two photons are detected by a ring of detectors (within coinc. time window)
- A LOR is drawn between the responding detectors
- Statistics → Image reconstruction

Annihilation probability		
Annihilat	ion probability equally distributed a	long LOR

- Radiotracer (e.g. sugar + e⁺ emitter) injected into patient
- Tracer accumulates at region of interest (e.g. metabolic tissue)
- e⁺ annihilates with e⁻ of tissue
- Emission of two annihilation photon with 511keV at rel. angle of 180°
- The two photons are detected by a ring of detectors (within coinc. time window)
- A LOR is drawn between the responding detectors
- Statistics → Image reconstruction

Annihilation probability		
Annihilat	ion probability equally distributed a	long LOR

- Radiotracer (e.g. sugar + e⁺ emitter) injected into patient
- Tracer accumulates at region of interest (e.g. metabolic tissue)
- e⁺ annihilates with e⁻ of tissue
- Emission of two annihilation photon with 511keV at rel. angle of 180°
- The two photons are detected by a ring of detectors (within coinc. time window)
- A LOR is drawn between the responding detectors
- Statistics → Image reconstruction

Annihilation probability		
Annihilat	ion probability equally distributed a	long LOR

PET

- Radiotracer (e.g. sugar + e⁺ emitter) injected into patient
- Tracer accumulates at region of interest (e.g. metabolic tissue)
- e⁺ annihilates with e⁻ of tissue
- Emission of two annihilation photon with 511keV at rel. angle of 180°
- The two photons are detected by a ring of detectors (within coinc. time window)
- A LOR is drawn between the responding detectors
- Statistics → Image reconstruction

Annihilation probability Annihilation probability equally distributed along LOR

- arrival time of the 511keV photons is measured,
- LOR between responding detectors with a probability distribution
 - → Less artefacts
 - → Improved SNR

PET

- Radiotracer (e.g. sugar + e⁺ emitter) injected into patient
- Tracer accumulates at region of interest (e.g. metabolic tissue)
- e⁺ annihilates with e⁻ of tissue
- Emission of two annihilation photon with 511keV at rel. angle of 180°
- The two photons are detected by a ring of detectors (within coinc. time window)
- A LOR is drawn between the responding detectors
- Statistics → Image reconstruction

Annihilation probability Annihilation probability equally distributed along LOR

- arrival time of the 511keV photons is measured,
- LOR between responding detectors with a probability distribution
 - → Less artefacts
 - \rightarrow Improved SNR

PET

- Radiotracer (e.g. sugar + e⁺ emitter) injected into patient
- Tracer accumulates at region of interest (e.g. metabolic tissue)
- e^+ annihilates with e^- of tissue
- Emission of two annihilation photon with 511keV at rel. angle of 180°
- The two photons are detected by a ring of detectors (within coinc. time window)
- A LOR is drawn between the responding detectors
- Statistics → Image reconstruction

Annihilation probability Annihilation probability equally distributed along LOR

- arrival time of the 511keV photons is measured,
- LOR between responding detectors with a probability distribution
 - → Less artefacts
 - \rightarrow Improved SNR

PET

- Radiotracer (e.g. sugar + e⁺ emitter) injected into patient
- Tracer accumulates at region of interest (e.g. metabolic tissue)
- e⁺ annihilates with e⁻ of tissue
- Emission of two annihilation photon with 511keV at rel. angle of 180°
- The two photons are detected by a ring of detectors (within coinc. time window)
- A LOR is drawn between the responding detectors
- Statistics → Image reconstruction

Annihilation probability Annihilation probability equally distributed along LOR

- arrival time of the 511keV photons is measured,
- LOR between responding detectors with a probability distribution
 - → Less artefacts
 - → Improved SNR

Scintillation based gamma/particle detection

A scintillation detector consists of 3 major parts:

- **Scintillator:** Converting energy of particle/y-photon into optical photons
- Photo detector: Converts optical photons into electric signal
- Amplifier/Readout electronics: Amplifies the signal and digitizes it

Every part is adding time spread to the total time resolution.

Scintillation based gamma/particle detection

A scintillation detector consists of 3 major parts:

- **Scintillator:** Converting energy of particle/y-photon into optical photons
- Photo detector: Converts optical photons into electric signal
- Amplifier/Readout electronics: Amplifies the signal and digitizes it

Every part is adding time spread to the total time resolution.

The silicon photomultiplier

- Solid state detector based on silicon
- Array of miniature avalanche photo diodes driven in Geiger mode
- Sensitive area a few mm² (typically 3x3mm²)
- High gain (~ 10^6) \rightarrow detection of single photons
- Very fast, insensitive to magnetic fields, high PDE, compact, robust, cheap, low power consumption
- Well suited detectors for many kinds of detectors in HEP and nuclear imaging (PET)
- Drawbacks: high dark count rate (100 kHz/mm²), crosstalk, after pulses, temperature sensitivity

50 x 50 cells

Ref: Renker et al., JINST 4 (2009) P04004

The analogue vs. the digital SiPM

+ time of the first photon

- SiPM is an analogue device
- Provides quasi digital information about the number of detected photons

Analogue SiPM:

Signal is the analogue sum of the single cells

Digital SiPM:

- Each SPAD connected to logic electronics
- Signal is the digital sum of fired SPADs
- Advantages: Electronics as close as possible at the SPADs (fast, accurate), control of single SPADs (reduction of darkcounts)

The Philips Digital Photon Counter (DPC)

- DPC consists of 16 dies (~3x3cm²)
- Each die consists of 4 pixels
- Each pixel consists of 3200/6400
 microcells
- Each cell can be turned on/off individually
- One time stamp per die
- One photon count per pixel
- 16 timestamps / 64 photon counts

Time resolution of the digital SiPM: setup

- Femtosecond laser
- Laser at detector: $\lambda = 400$ nm, $\Delta t = 150$ fs, rep. rate = 10kHz
- 1 DPC tile, two pixels/dies in coincidence
- Trigger level: 1 photon
- At low photon levels: no validation, no intergration
- Two dies or pixels activated, give timestamp *t* and number of triggers *n*
- The time resolution was determined by calculating the **standard deviation** of t_1 - t_2 dependent on n

Time resolution of the digital SiPM: Results

Ref.: S.E. Brunner, PhD thesis, Vienna UT (2014)

Time resolution prop. 1/n^p (expected by simulation). Drop of SPCTR when approaching single photon level.

Factors influencing the time resolution of scintillators & & Improvement by the Cherenkov effect

The Cherenkov effect

- Dielectric material
- Charged particle
- Faster than the speed of light in the medium
- Constructive interference of electromagnetic pulses by polarisation of the atomic dipoles
- Cherenkov emission angle θ

$$\cos\theta = \frac{1}{\beta n}$$

• Number of emitted Cherenkov photons

$$\frac{dN^2}{dxd\lambda} = \frac{2\pi z^2 \alpha}{\lambda^2} \cdot \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right)$$

• Emission spectrum (Frank-Tamm)

$$N(\lambda) \sim 1/\lambda^2$$

Gamma-photons and the Cherenkov effect

Gamma-photons and the Cherenkov effect

Time precision of the Cherenkov effect

Cherenkov photons are emitted almost instantaneously.

- Influence of electron propagation inside the material:
 - Electron range ~ 200-300 μ m, velocity $\geq \beta_t = 1/n$
 - time spread ~ 1-2 ps
- **Dispersion**: Angle of Cherenkov emission is dependent on the wavelength, $\cos \theta = 1/\beta n(\lambda)$

Investigating the Cherenkov effect for gamma detection: simulation environment

- Monte Carlo simulations using Geant4 (v9.4.p3, Livermore libraries)
- Basic setup: scintillator attached to a generic photo detector (TR=0, QE=1)
- Size scintillator: 3x3x3mm³, photo detector 3x3mm²
- Perfectly polished surface, no wrapping, surrounded by air
- Comparing various materials (high density, high n):
 - pure Cherenkov radiators: N-LAK33A/B, N-FK5, N-LASF31A, P-SF68, LuAG
 - hybrid materials: LuAG:Ce, LSO:Ce, BGO, PWO

Cherenkov photon yield for 511keV annihilation photons (simulation)

Material	Luminescence type*	Density [g/cm³]	n	Cutoff wavel. [nm]	Created photons (avrg.)	Detected photons (avrg.) [3x3x3mm³]
N-LAK33A	Cherenkov	4.22	1.77	300	22.4	13.7
N-LAK33B	Cherenkov	4.22	1.77	280	24.9	14.5
N-FK5	Cherenkov	2.45	1.5	260	26.1	14.6
N-LASF31A	Cherenkov	5.51	1.91	310	19.6	12.1
P-SF68	Cherenkov	6.19	2.07	400	12.8	8.4
LuAG pure	Cherenkov	6.73	1.84	180	32	10.6
LuAG:Ce	hybrid	6.73	1.84	250	24.3	7.2
LSO:Ce	hybrid	7.4	1.82	390	13.8	1.1
BGO	hybrid	7.13	2.15	310	32.8	4.6
PWO	hybrid	8.28	2.2	340	22.6	3.8

Ref.: S. E. Brunner, PhD thesis, Vienna UT (2014) *Cherenkov: photon emission via the Cherenkov effect Hybrid: simultaneous photon emission via the Cherenkov effect and scintillation

S. E. Brunner

Factors influencing the Cherenkov photon yield

Cherenkov photon yield

Dependent on

-40 -30 -20 -10 0 10 20 30 40

Wavelength shift [nm]

2.3

2.2

2.1

2

1.9

1.8

1.7

1.6

1.5

1.4

Refractive index

35

- Transmission
- **Refractive index** .
- Density (electron range) •

o=3.22

Simulated number of Cherenkov photons in

N-LAK33A (3x3x3mm³) reaching the photo detector

35

30

25

20

15

10

5

2.3

2.2

2.1

2

1.9

1.8

1.7

1.6

1.5

1.4

Refractive index

20

10

-40 -30 -20 -10 0 10 20 30 40

o=5.22

S. E. Brunner

Comparing factors influencing the time resolution of scintillators and Cherenkov radiators

- Photon statistics (rise & decay time, light yield)
- **Depth of interaction** (crystal dimension, density)
- **Photon propagation** (crystal dimension, transmission)

Influence of photon statistics

Influence of DOI and photon propagation

Comparing creation and arrival times of scintillation and Cherenkov photons

Impact of the Cherenkov effect on the coincidence time resolution

- Simulation of a coincidence setup
- LSO:Ce, length / = 1-30mm
- Determination of the coincidence time resolution with and without the Cherenkov effect
- On average 1-2 Cherenkov photons were detected in each crystal per event
- Cherenkov photons clearly improve the CTR for all crystal lengths
- Influence of **crystal length** (DOI + photon propagation) on the CTR is visible

Improvement of the CTR due to Cherenkov emission ↔ **fast time constants**. Improvement of the CTR with decreasing crystal length ↔ **DOI & photon propagation**.

Improving the time resolution of scintillators using the Cherenkov effect: proof of principle measurements

The Cherenkov effect for annihilation photon detection: setup

- Coincidence setup using ²²Na
- Photo detectors: Philips DPC3200
- Temp.: -18°C, 10% cells off
- LSO:Ce (3x3x3mm³) as reference detector
- Cherenkov radiator (3x3x8mm³) for investigations
- Surface: polished, no wrapping

Materials

- Pure Cherenkov radiators (Cherenkov emission only): LuAG, N-LASF31A
- Hybrid materials (Cherenkov emission and scintillation occur): LuAG:Ce, BGO

Proof of principle measurement: Cherenkov photon yield

- Temp. -18°C, inhibited cells 10%
- Crystal sizes: 3x3x8mm³, polished, no wrapping
- Cut on photoelectric absorption of annihilation photons at reference detector

Proof of principle measurements: Time resolution with pure Cherenkov radiators

Crystal 1	Crystal 2	Length 1 [mm]	Length 2 [mm]	Thr 2 [photons]	Setup	CTR [ps]
LSO:Ce	LSO:Ce	3	8	photo-p.		192 ± 4
LSO:Ce	LuAG	3	8	6	B	146 ± 16
LSO:Ce	LuAG	3	8	4-6	B	145 ± 6
LSO:Ce	N-LASF31A	3	8	6	C	178 ± 16

Time resolution with hybrid scintillators

- Undoped LuAG shows only Cherenkov emission
- Ce doped LuAG shows Cherenkov emission and scintillation
- Cherenkov emission is fast → good time resolution
- Scintillation provides high light output → good energy resolution (necessary for rejecting scattered events in PET)
- A hybrid material offers both advantages
- Challenge: in undoped LuAG Cherenkov photons can be detected in doped LuAG:Ce many Cherenkov photons get absorbed → better material: BGO

Time resolution using hybrid Cherenkov radiators

S. E. Brunner

- Two BGO crystals 3x3x8mm³ in coincidence
- Philips DPC3200
- Surfaces polished, wrapped in Teflon,
- Trigger on first arriving photon
- Two components visible:

Component A (76%): CTR = 2.38ns FWHM Component B (24%): **CTR = 301ps FWHM**

- Best ever measured CTR with BGO (according to Moses, NIM A 580 (2007) p.919)
- LSO:Ce with the same size: 240ps FWHM

Cherenkov emission improves the CTR also in scintillators. The **DPC** is the **optimum detector** for Cherenkov photon detection in hybrid materials, because it allows to trigger on the first arriving photon.

The Cherenkov effect for gamma detection: potential and outlook

- **Cherenkov photons** were **detected** for γ-photons with 511keV in Cherenkov radiators and hybrid scintillators using digital SiPM
- The **time resolution** could be **improved** when compared with a fast scintillator (LSO:Ce)
- **Detecting Cherenkov photons in hybrid** scintillators could solve problem of energy determination while improving the TR
- Challenge: Cherenkov photon yield is very low

Outlook

- Detection of Cherenkov radiation with two (pure) Cherenkov radiators in **coincidence** (first tests are promising)
- Investigations of **new materials** for increasing the Cherenkov photon yield

The Cherenkov effect for gamma detection: potential and outlook

- **Cherenkov photons** were **detected** for γ-photons with 511keV in Cherenkov radiators and hybrid scintillators using digital SiPM
- The **time resolution** could be **improved** when compared with a fast scintillator (LSO:Ce)
- **Detecting Cherenkov photons in hybrid** scintillators could solve problem of energy determination while improving the TR
- Challenge: Cherenkov photon yield is very low

Outlook

Detection of Cherenkov radiation with two (pure) Cherenkov radiators in **coincidence** (first tests are promising)

Thank you!

Investigations of new materials for increasing the Cherenkov photon yield

Influence of the DOI

- Analytical approach
- Calculating expectation value of y-interaction inside a scintillator with a length /

$$E_{\text{DOI}} = \frac{N(l)}{\mu} \left(1 - e^{-\mu l} \left(1 + \mu l \right) \right) \quad \text{Var}_{\text{DOI}} = \frac{1}{\mu} \left(2E(l) - l^2 e^{-\mu l} \right) - E(l)^2$$

S. E. Brunner

Photon detection times

Scintillator

 $\Lambda\Lambda$

d

Photon detector

Photon source

- Simulating photon arrival times at photo detector for LSO:Ce (3x3x30mm³)
- Shoot γ-source from the side
- Variating distance of y-source relative to photo detector

Time resolution of the digital SiPM: simulation

- MC simulation using ROOT
- Structure based on the Philips DPC
- Two arrays representing the SPADs of two pixels/dies
- Laserpulse is triggering cells
- The arrays give back the time of the first trigger and the number of triggers per array
 - \rightarrow time resolution

Time resolution of the digital SiPM: simulation

- trigger rate probability dc rate intensity pulse width statistics model Darkcounts Laserbulse Crosstalk SPAD time res. standard deviation delav Array 1, i,j Array 2, i,j frame window time 2 time 1 number triggers 1 number triggers 2 **CTR** at photon level resolution [ps] resolution [ps] Simulation. Measurement. 120 120 no crosstalk no crosstalk Coincidence time r Coincidence time 100 80 × Pixel vs. pixel × Laser 0 ps ²⁰- × Die vs. die 20 + Laser 30 ps 2 3 5 6 8 2 3 4 5 6 8 Number of photons Number of photons Figure 3.20 Figure 3.20
- MC simulation using ROOT
- Structure based on the Philips DPC
- Two arrays representing the SPADs of two pixels/dies
- Laserpulse is triggering cells
- The arrays give back the time of the first trigger and the number of triggers per array
 - \rightarrow time resolution

Setup was adjusted according to outcomes of the simulation. Artefacts at low photon levels vanished.

Time resolution of the digital SiPM: simulation

Coincidence time resolution [ps] 0 0 2 0

100

50

0

250

4 6 8 10 12 14 16 18 20

2

- Correlated triggers cause artefact \rightarrow opt. cross talk •
- Experimental validation: ٠

Coincidence time resolution [ps] no crosstalk p1 0.2819 ±0.02581 200 p2 33.81 ± 7.956 150 100 CTR at single photon level is 196.4 +/- 10.68 ps 50 0 2 4 6 8 10 12 14 16 18 Number of photons Figure 3.21

Simulation,

Simulation.

with crosstalk

CTR at single photon level is 194.6 +/- 16.53 ps

 χ^2 / ndf

Prob

0q

p1

p2

44.92 / 32

0.06445

 164.6 ± 8.911

 30.01 ± 13.92

 0.2872 ± 0.05717

Number of photons

117.3 / 58

6.783e-06

162.6 ±7.119

 χ^2 / ndf

Prob

р0

S. E. Brunner

20

Time resolution of the digital SiPM: **Results**

S. E. Brunner

 χ^2 / ndf

Prob

p0

p1

p2

300

250

163.5 / 68

7.671e-10

293 ±4.258

0.7919 ±0.01377

56.83 ±0.6314

Single photon time resolution of SiPM

- Figure of merit: single photon time resolution
- Semi-automatic test stand
- PC (LabView) controls: bias, cooling, oscilloscope
- PC records:

bias, current, temperature, signal (amplitude, area, risetime), time difference to trigger

• Offline data analysis, including automatic determination of the breakdown voltage

→ time resolution as function of number of photons, bias, temperature

Peltier element Fiber holder SiPM

Single photon time resolution of SiPM

Manufact.	AdvanSiD	Hamamatsu	Ketek	Ketek	Ketek
Туре	SiPM3S P-50	S10931- 100P	PM3375- B72	PM3360- A2*	PM3350- B63
Size [mm ²]	3x3	3x3	3x3	3x3	3x3
SPAD size [µm]	50	100	75	60	50
Breakdown v. [V]	~35	~70	~23	~23	~23
DC-rate [MHz]	<45	<12	<4.5	<4.5	<4.5
Gain [x10 ⁶]	2.5	2.4	14	9	6
PDE [%]	22	70	62	39	50
Cell cap. [fF]	-	2800	650	380	270
SPTR** [ps]	200	200	160	200	140

*prototype

** best value

Best time resolution by sensors with the smallest cell capacitance (Ketek). Large contribution of the system to the time resolution!

