AX-PET from demonstrator towards a full-ring brain scanner

Paola Solevi on behalf of the AX-PET collaboration

IFIC (CSIC/UV), Spain and EBG MedAustron, Austria paola.solevi@ific.uv.es

-0000

AX-PET

OOOOO The Demonstrator Proof-of-concept

Software

OOOO Brain Imaging

The AX-PET collaboration

Extraordinary example of technology transfer from High Energy Physics to Medical Physics.

The goal of the AX-PET collaboration

✓ Build and fully characterize a demonstrator of a PET camera with 3D localization of the gamma interaction point, decoupling spatial resolution from sensitivity.

AX-PET

Different PET detector concepts

 $\bigcirc \bigcirc$

Proof-of-concept

000000

The Demonstrator

AX-PET concept

	Small crystals	Big crystals	
Sensitivity	$\overline{\mathbf{S}}$	÷	
Resolution	\odot	3	

Brain Imaging

 $\bigcirc \bigcirc \bigcirc \bigcirc$

Software

DOI dependence on crystal thickness

AX-PET

OOOOO The Demonstrator

Proof-of-concept

Software

OOO Brain Imaging

The AX-PET concept

- x-y discrete design
- Trans-axial resolution $\sigma = d/\sqrt{12}$

Hodoscope of WLS strips placed underneath each crystal layer.

- $N \ge I$ strips fired per event.
- Minimum resolution in z $\sigma = w/\sqrt{12}$

The Demonstrator

 $\bigcirc \bigcirc \bigcirc \bigcirc$ Proof-of-concept Software

Brain Imaging

The AX-PET concept

 $\bigcirc \bigcirc$

✓ 3D localization of the gamma interaction with discrete trans-axial coordinate and continuous z.

✓ High resolution with mitigated DOI effect.

✓ Fully scalable design that can be adapted to different scenario requirements.

AX-PET

OOOOO The Demonstrator

<u>Proof-of-concept</u>

○ ○ ○
Software

OOO OO Brain Imaging

The AX-PET module

Our choice! Originally conceived for brain imaging.

- 6 layers
- 8 crystals per layer
- 26 WLS strips interleaved to each layer

48 crystals + 156 WLS strips = 204 read-out channels

AX-PET

The Demonstrator

Proof-of-concept

Software

Brain Imaging

Detection elements

LYSO crystals (Lu_{1.8}Y_{0.2}SiO₅: Ce) Prelude 420 from Saint Gobain

- 3x3x100 mm³ read-out on one side
- Aluminum coated on the opposite side to enhance reflectivity ~85%
- Intrinsic resolution (8.3 \pm 0.5)% FWHM @511 keV

EJ-280-10x from Eljen Technology

- 3x0.9x40 mm³ read-out on one side
- Decay time 8.5 ns
- $\lambda_{blue} = 0.4 \text{ mm}$ (highly doped 10x) $\lambda_{green} = 188 \text{ mm}$

MPPC 3.22×1.19 Octagon-SMD

- $1.2 \times 3.2 \text{ mm}^2$ active area
- 782 pixels
- custom made units
- ~40% PDE
- ~1000 pe @ 511 keV

MPPC S10362-33-050C

- 3x3 mm² active area
- 3600 pixels
- ~40% PDE
- ~10-50 pe @ 511 keV in LYSO

AX-PET

AX-PET concept

The Demonstrator

 $\bigcirc \bigcirc$ Proof-of-concept $\bigcirc \bigcirc \bigcirc \bigcirc$ Software

Brain Imaging

The AX-PET demonstrator

Two fully assembled modules at CERN.

DAQ & Readout Electronics

- Individual analogue readout of MPPC output
- External trigger (NIM logic) to sort coincidences
 - Single crystal E > 50 keV
 - Module energy E_sum[400 keV, 600 keV]

- Scatter in patient rejected
- Inter-Crystal scatter events accepted

Brain Imaging

The Demonstrator

ator Proof-of-concept

Software

OOOO Brain Imaging

Axial resolution

 $\bigcirc \bigcirc$

Tagging crystal to scan the axial dimension in each module

The two modules in coincidence

II Symposium on PET

The Demonstrator

 $\bigcirc \bigcirc$ Proof-of-concept $\bigcirc \bigcirc \bigcirc \bigcirc$ Software

Brain Imaging

The proof-of-concept

Thin capillaries

II Symposium on PET

AX-PET

AX-PET concept

The Demonstrator

 $\bigcirc \bigcirc$ Proof-of-concept $\bigcirc \bigcirc \bigcirc \bigcirc$ Software

Brain Imaging

The proof-of-concept

AX-PET

The Demonstrator

Proof-of-concept

Software

OOOO Brain Imaging

The proof-of-concept

II Symposium on PET

AX-PET

The Demonstrator

Proof-of-concept

 $\bigcirc \bigcirc$

Software

OOOO Brain Imaging

The proof-of-concept

AX-PET

The Demonstrator

Proof-of-concept

 $\bigcirc \bigcirc \bigcirc \bigcirc$ Software

Brain Imaging

The proof-of-concept

AX-PET

The Demonstrator

Proof-of-concept

○ ○ ○ Software OOO Brain Imaging

The proof-of-concept

AAA 2011

P. Solevi

II Symposium on PET

Challenges (just some of them..)

- Two coordinates with different readouts: continuous z and discrete x-y.
 - List-mode data allows to preserve spatial resolution, no binning is required.
- Prototype in continuos evolution: different acquisition protocols, FOV varies.
 - System Response Matrix calculation required in ML-EM reconstruction: off-line (more accurate, computationally consuming) and on-the-fly (less accurate but better deals with prototype evolution).
- Novel device with features that require dedicated reconstruction approaches.
 Inter-Crystal Scatter events: it has the potential to enhance sensitivity but resolution shall be preserved.
- Monte Carlo support is required to support the prototype predictions and developments, test reconstruction SW, bring some light on measurements understanding.
 Common tool such as GATE can't model such a complex system, dedicated Monte Carlo model is required.

- The gamma undergoes multiple Compton interactions within the module (~30%)
- We can't access the true kinematics of the event.
- How to deal with it at reconstruction level?

V-proj

Conventional approach

- Selection: selecting one of the two LORs by probability criteria
- low identification success rate (~70% so far with NN)

$$a=a_1 \text{ if } w_1 > w_2$$

 $a_1, a_2:$
 $a=a_2 \text{ if } w_2 > w_1$

Proposed approach

 Reconstruct both LORs that is preserving the full probability function associated to the Vshape.

 $a_1, a_2: a = w_1a_1 + w_2a_2$

$\bigcirc \bigcirc \bigcirc$ Proof-of-concept AX-PET concept Software Brain Imaging The Demonstrator AX-PET Software developments: ICS Inclusion

AX-PET concept The Demonstrator Proof-of-concept Software Brain Imaging Software developments: ICS Inclusion

General considerations

- Sensitivity increases in all imaged subjects.
 - SNR improves but not as much as sensitivity.
- Increase in noisy counts in cold regions (see NEMA) is mitigated by the inclusion approach than other conventional ICS treatments.

Software developments: Monte Carlo

Dedicated Monte Carlo model based on GATE classes.

- Geometry of the detector (staggering, layered, etc.)
- WLS response model: it has to be computationally efficient therefore an analytical model of the signal on the strips is tuned on experimental data from dedicated experimental set-ups.
- Intrinsic radioactivity
- Dedicated coincidence sorter:WLS channels shall be treated as well, hybrid dead-time model, etc.

P. Solevi et al, PMB 58(2013)

II Symposium on PET

Z (mm

<u>The Demonstrator</u>

Proof-of-concept

Software

Brain Imaging

AX-PET for brain imaging

 AX-PET was at the very beginning conceived for Brain Imaging (3x3 mm² crystal cross section, high axial resolution, etc).

Demonstrator design

- 48 modules arranged over a ring of 468 mm diameter.
- Electronics performance improved (within a realistic technological horizon):
 - 75 ns integration time window (pile-up)
 - [400,650] keV @ module
 - 5 ns coincidence window
 - Improved dead-time at DAQ level

Can we do better?

 AX-PET was at the very beginning conceived for Brain Imaging (3x3 mm² crystal cross section, high axial resolution, etc).

 AX-PET was at the very beginning conceived for Brain Imaging (3x3 mm² crystal cross section, high axial resolution, etc).

Novel design

- 20 degrees slanted layers.
- 300 layers arranged over a ring of 474 mm diameter.
- One module is the sum of 6 continuous layers.

 AX-PET was at the very beginning conceived for Brain Imaging (3x3 mm² crystal cross section, high axial resolution, etc).

- The two geometries are comparable in terms of sensitivity.
- Reduced gaps translates into a more homogeneous sampling over the FOV.

٠

٠

The Demonstrator

Proof-of-concept

Brain Imaging

Cologne phantom

Resolution phantom

- 219 mm diameter lucite disk, 28 mm thick.
- Different rods of different diameters (2, 3 and 4 mm with 4, 6 and 8 mm pitch).
 - 60 MBq activity in the phantom (close to NEC peak).

The Demonstrator

Proof-of-concept

Software

Brain Imaging

Cologne phantom

Resolution phantom

The Demonstrator

Proof-of-concept

Brain Imaging

NEMA phantom

Image quality phantom

- 200 mm diameter air disk, 60 mm thick.
- Different rods (50 mm Hot-Cold, 4 mm Hot-Cold) in homogeneous background.
- Different activity ratios studied: 1.2:1, 5:1 and 20:1.
 - 26 MBq total activity at the different ratios.

The Demonstrator

Proof-of-concept

Software

Brain Imaging

NEMA phantom

Image quality phantom

Proof-of-concept

Software

Brain Imaging

Conclusions and Outlook

<u>The collaboration accomplished with the primary objective:</u>

two modules built and fully characterized.

<u>What we learned from simple source laboratory set-ups?</u>

- spatial resolution 2 mm (x-y) and 1.35 mm (z).
- energy resolution 11.8% FWHM @ 511 keV.
- 3D localization of the gamma interaction.
- Large Compton Scatter fraction ~30%.

And from phantom measurements?

AX-PET concept

- AX-PET nicely works with extended sources and small animals, too.
- That every improvement in hardware has to be followed by at least the same effort in software development (Monte Carlo, new reconstruction algorithms) and usually it pays off.

AX-PET for brain imaging?

- Preliminary Monte Carlo studies are promising. •
- Exquisite example of the AX-PET scalability. •

- Oncology: brain tumors have 0.1% prevalence in western population, but among the most fatal cancers (malignant gliomas ~70%).
 - FI8-FDG commonly used tracer, contrast can range from large necrotic tumor core lesion to low contrast small regions.
 - Tumors follow-up is usually characterized by SUV (~Activity concentration/ Injected dose) which is affected by RC and PVE, for lesiones below few times the system resolution.
 - The higher the resolution the better SUV is estimated.
- **Impairment Dementia**: life expectancy increases and with it dementia (WHO predict 48 million people in 2040 affected by dementia, AD mostly).
 - There is a huge variety of contrasts and lesion sizes related to AD.
 - Sensitivity is crucial to detect small lesions at early stages when treatments are still possible.

sl - :

analogue info processed by custom made
 VME ADC

Individual analogue readout of MPPC output Custom designed DAQ system

00000

The Demonstrator

fully analogue readout chain

00000

AX-PET

AX-PET concept

- not optimized at all for this specific application
- Amplifiers: OPA486 (Lyso) / OPA487 (WLS)
- Fast energy sum for all the crystals in the module
- VATA GP5 chip
 - 128 ch charge sensitive integrating
 - fast (~ 50ns shaper + discriminator) / slow (~ 250ns shaper) branches
 - sparse readout mode: only the channels above thr are multiplexed into the output

 $\bigcirc \bigcirc$

Proof-of-concept

OOOO Brain Imaging

AX-PET CO

AX-PET concept The Demonstrator

Proof-of-concept

 $\bigcirc \bigcirc$

Software

Brain Imaging

ICS reconstruction

System matrix element

Conventional approach \rightarrow **Identification**

$$\frac{a_{i'j}}{\sum_{j=0}^{J} a_{i'j} n_j^k} = \frac{a_{i_tj}}{\sum_{j=0}^{J} a_{i_tj} n_j^k}$$

One of the 2 LOR is selected, (t =1 or 2).
In this study, randomized selection is used.

Our approach \rightarrow **V-projection**

 $a_{i'j} = \eta_1 a_{i_1j} + \eta_2 a_{i_2j}$

- Both LORs are kept but weights are assigned.
- In this study, $\eta_t = 0.5$ equivalent to randomized selection.