

II Symposium on Positron Emission Tomography September 21st - 24th 2014, Jagiellonian University, Kraków, Poland

- Fluorine chemistry
- Fluorinated PET Radiopharmaceuticals
- ¹¹C labeling
- Carbon labeled Radiopharmaceuticals
- Perspectives

Radiotracer - chemical compound consists of:

Radioisotope: a radionuclide with physical data suitable for

external measurement

Bioconjugate : a molecule with suitable pharmacokinetics, and high

concentrations in the target organ or process

PET Radioisotopes

Useful radionuclides

¹⁸F – half-life 110 min.
 ¹¹C - half-life 20 min.
 ¹⁵O - half-life 2 min.
 ¹³N - half-life 10 min.

Radionuclide scissors

- Shorter halflife radiation exposure
- Longer halflife clinical availability

PET Radioisotopes

Useful radionuclides

≫	•	¹⁸ F –	half-life	110 min.
	•	¹¹ C -	half-life	20 min.
	•	¹⁵ 0 -	half-life	2 min.
	•	¹³ N -	half-life	10 min.

Radionuclide scissors

- Shorter halflife radiation exposure
- Longer halflife clinical availability

Isotopes production

Cyclotron

IBA 18/9

GE PETrace 8

Siemens RDS

Isotopes production

Target for liquids

Production¹⁸F :

Reaction: ¹⁸O(p,n)¹⁸F Target: H₂¹⁸O c, 95%¹⁸O Product: ¹⁸F⁻

Application in medicine

Oncology

Principle:

increased glycolysis in tumor cells — *Warburg phenomenon* — 20-30-times higher glucose metabolism

¹⁸F-FDG (2-Deoxy-2-fluoro-D-glucose)

Standard radiopharamceutic in clinical practice: diagnosis of most cancers

¹⁸FDG Synthesis

-OAc

Step 1: Production ¹⁸ F
Step 2: Separation ¹⁸ F ⁻
Step 3: Drying
Step 4: Elution ¹⁸ F
Step 5: Labeling
Step 6: Deprotection
Step 7: Purification
Step 8: Formulation
Step 9: Dispensing

Füchtner et al. App. Radiat. Iso. 47, 61-66, 1996

¹⁸FDG limitations

- FDG: normal increased uptake
 - brain gray matter
 - myocardium
 - active muscle
 - urine tract (bladder)
- FDG: abnormal increased uptake
 - infection
 - inflammation
 - post-treatment areas
- FDG: low uptake : low grade tumors

Problem: When sugar is used by others, or not at all...

Nucleophilic fluorination

Step 1: Production ¹⁸ F
Step 2: Separation ¹⁸ F ⁻
Step 3: Drying
Step 4: Elution ¹⁸ F
Step 5: Labeling
Step 6: Deprotection
Step 7: Purification
Step 8: Formulation
Step 9: Dispensing

Füchtner et al. App. Radiat. Iso. 47, 61-66, 1996

• Aliphatic nucleophylic fluorination [¹⁸F]F⁻ with protection of other groups

- Most popular ¹⁸F labeling method:
 - precursor with active group (Br, I, sulphonates, triflates) and protective groups
 - aprotic solvent: acetonitrile, DMF (dimethylfomamide), DMSO, temp.80-180°C, 5-30 min.

Application in medicine

Oncology

Principles:

- increased glycolysis in tumor cells Warburg phenomenon 20-30-times higher glucose metabolism
- increased permeability of biological membranes of tumor cells
- increased protein synthesis
- specific reactions

Beyond FDG — FDM...

nature.com > journal home > archive > issue > technical report > abstract

ARTICLE PREVIEW

view full access options 🕨

NATURE MEDICINE | TECHNICAL REPORT

- < 🖂 🔒

日本語要約

2-deoxy-2-[¹⁸F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis

Nobuhiro Tahara, Jogeshwar Mukherjee, Hans J de Haas, Artiom D Petrov, Ahmed Tawakol, Nezam Haider, Atsuko Tahara, Cristian C Constantinescu, Jun Zhou, Hendrikus H Boersma, Tsutomu Imaizumi, Masataka Nakano, Aloke Finn, Zahi Fayad, Renu Virmani, Valentin Fuster, Lisardo Bosca & Jagat Narula

Affiliations | Contributions | Corresponding author

Nature Medicine 20, 215–219 (2014) | doi:10.1038/nm.3437 Received 08 January 2013 | Accepted 17 April 2013 | Published online 12 January 2014

¹⁸F Fluoroethylotyrosine [¹⁸F] FET

Uptake and metabolism is similar to amino acids and signal is proportional to amino acid uptake and protein synthesis. Mainly used for brain tumor imaging.

¹⁸F fluoromisonidasole [¹⁸F]MISO

Demonstrates hypoxia in tumorand distinguishes hypoxic tissues

18F-MISO Analogs

¹⁸F-Miso Analogs

¹⁸F Fluorothymidine [¹⁸F]FLT

Marker of cell proliferation (thymidine pathway in S2 phase cellular mitosis)

Distinguishes decreased cellular uptake secondary to treatment.

¹⁸F Sodium fluoride

¹⁸F NaF is chemisorbed onto bone surface by exchanging with OHgroups in hydroxapatite crystal of bone to form fluoroapatite. Mechanism of uptake similar to other bone imaging agents (Tc - 99m MDP/HDP)

¹⁸F Summary

- Well-established use of ¹⁸F compounds
- Efficient fluorination scheme
- FDG as a work-horse
- High yields and activities
- Other fluorinated compounds are available
- Regulatory problems

¹¹C Production

Target for gases

Production ¹¹C :

Reaction : ${}^{14}N(p,\alpha){}^{11}C$

Target : 99,6%¹⁴N (0,1-5%H₂) Product : HCN, CH₄

or

Target : ¹⁴N (O₂) Product : CO, CO₂

¹¹CO₂ Synthons

Wet method

Iodination in THF or diethyl ether, high yield, contaminiation with ¹²CO₂, HI is corosive

Dry method
$${}^{14}N(p,\alpha){}^{11}C \xrightarrow{O_2} {}^{11}CO_2$$

 $H_2 \downarrow Ni @ 410 °C$
 $H_2 \downarrow Ni @ 410 °C$
 ${}^{11}CH_4 \qquad \qquad \downarrow I_2 @ 720 °C$
Reduction of ${}^{11}CO_2$ on Ni catalyst in 410 °C than
iodination I_2 in 720 °C. High yield CH_3I formation.
No corrosive HI.

 $^{11}CH_3I$ + CF₃SO₂OAg $\xrightarrow{250 \circ C}$ CF₃SO₂O¹¹CH₃

Methyl triflate

Advantages:

- 10⁴-10⁵ times more reactive than CH₃I
- For unstable or unreactive substances

¹¹C Synthesis unit

¹¹C-methionine

Radiochemical purity

¹¹C-methionine

Enantiomeric purity

- Methyl iodide or methyl triflate metylation most popular ¹¹C labeling method:
 - precursor with heteroatom active group (N, O, S) and protective groups
 - Basic, organic solvent: NaOH, EtOH.

Practical applications

Receptor imaging (agonist/antagonist/modulator)

[11C]WAY100635 — behavioral disorders

¹¹C raclopride — neurodegradation, schizofrenia

Practical applications

Receptor imaging (agonist/antagonist/modulator)

Neurotransmitter system	Radioligand
Dopamine D ₁	[¹¹ C]SCH 23390
	[¹¹ C]NNC 112
Dopamine D ₂	[¹¹ C]raclopride
	[¹¹ C]NMSP
	[¹¹ C]FLB 457
	[¹⁸ F]fallypride
Dopamine transporter	[¹¹ C]methyl-phenidate
	[¹¹ C]PE2I
Serotonin 5-HT1A	[¹¹ C]WAY-100635
Serotonin 5-HT _{2A}	[¹¹ C]NMSP
	[¹¹ C]MDL 100907
Serotonin transporter (5-HTT)	[¹¹ C]McN
	[¹¹ C]DASB
	[¹¹ C]MADAM
Opiate	[¹¹ C]diprenorphine
	[¹¹ C]carfentanil
Neurokinin-1	[¹¹ C]SPA-RQ
GABA-benzodiazepine	[¹¹ C]flumazenil
Peripheral benzodiazepine	[¹¹ C]PK11195

¹¹C Flexibility - ¹¹C -acetate

Reaction with Grignard compounds:

$$^{11}CO_2 + CH_3MgBr \xrightarrow{\text{THF}} CH_3^{11}COOH$$

¹¹C acetate- prostate cancer diagnostics

L-[S-methyl 11C]-methionine

- ¹¹C-methionine imaging:
- aminoacids transport (L-[S-methyl 11C]-methionine)
- protein synthesis (L-[11C]methionine)
- transmethylation—(L-[11C]methionine)

Reaction of CO catalyzed with Pd and Se:

1-(2-phenylo-[carbonyl-11C]propanoyl)pirolidine — histamine receptors modulator

¹¹C — modern organic chemistry

Stille reaction


```
Sonogashira reaction
```


 17α -(3'-[11C]prop-1-yn-1-yl)-3-methoxy-3,17*B*-estradiol — estrogene receptors — breast cancer imaging

¹¹C — modern organic chemistry

Suzuki reaction

[¹¹C] M-MTEB — glutamate receptors

¹¹C Summary

- Short ¹¹C half-life requires on-site imaging
- Well-recognized synthons CH_3I
- Wide range of compounds with poorly understood function
- Clinical and preclinical trials

Tracers of membrane proliferation - increased permeability of biological membranes of tumor cells.

The most used compounds for prostate cancer

In place of conclusions

¹⁸F Flutemetamol

[11C]PIB (Pittsburgh Compound B) —Alzheimer disease imaging

Neuraceq $^{\ensuremath{\mathbb{R}}}$

Vizamyl®

Contributors: FLT: Dorota Szczepaniak, Anna Pękal Methionine synthesis: Anna Pękal, Julia Juszczyk Acetate synthesis: Agnieszka Tofil PET site activity: Jarosław Choiński (Head) and people from AAA Poland

