

Development of a high resolution animal PET with continuous crystals and SiPMs

<u>Gabriela Llosá</u>¹, John Barrio¹, Jorge Cabello^{1,2}, Ane Etxebeste¹, Carlos Lacasta¹, Josep F. Oliver¹, Magdalena Rafecas¹, Carles Solaz¹, Vera Stankova^{1,3}.

¹ Instituto de Física Corpuscular - IFIC (CSIC-UV), Valencia, Spain ²Now at Klinikum Rechts des Isar, Technische Universität München, Germany. ³Now at Kirchhoff Institute for Physics, Heidelberg, Germany.

IRIS group http://ific.uv.es/iris

Il Symposium on PET, Krakow 21-24 September 2014

Outline

- First prototype
- Second prototype
- New geometries

Goals

CSIC CSIC VniverSitat DÖVALÈNCIA

• Use of novel technologies (SiPMs) to evaluate performance improvements.

Use of continuous crystals

challenges.

Obtain excellent spatial resolution
 without loosing sensitivity

Instrumentation and software

Challenges		
 Large number of readout channels -> ASICs Position determination is an 		
issue • Timing resolution can be		

	\sim
	G
	de
	a
	0
	CI
	nh

Detector components

- Monolithic, 64-pixel SiPM matrices from FBK-irst/ AdvanSiD
 - Elements of $1.5 \times 1.4 \text{ mm}^2$ in a $1.5 \times 1.5 \text{ mm}^2$ pitch.
 - 850 microcells of 50 μm x 50 μm size per pixel.
 - Readout on two sides.
- Different crystals tested.
 Continuous, white painted LYSO crystals 12x12x5/10 mm³ selected.

G. Llosá et al., Characterization of a PET detector head based on continuous lyso crystals and monolithic, 64-pixel silicon photomultiplier matrices. Gabriela IPMB 2010, vol 55, p 7299-7315.

Readout electronics

MAROC2 ASIC from LAL, Orsay (France).

- 64 channels
- Variable gain (6 bits), low noise preamplifier
- Slow shaper (~20-150 ns, adjustable)
- Fast shaper (15 ns) + 3 discriminators =>Trigger signal.
- LabView software for DAQ

Detector characterization - white slab

Photodetector uniformity within 5%. No correction for gain variations.

Vniver§itat döValència

Detector characterization

Poor timing resolution: 6 ns FWHM.

- Low amount of light per pixel
- Trigger given by OR of all channels and common threshold.
- Only one discriminator- time walk
- Trigger shift increasing with channel number (up to 6%).

Gabriela Llosá

Position determination

Compression effects with COG

Black crystal

White crystal

Vniver§itat **DÖVALÈNCIA**

Position determination

Based on a model of the angle subtended by the interaction position with each photodetector element.

 $f = A_0 \times \Omega$.

i = 64

photons measured

in pixel *i*

photons in pixel *i*

pixel *i* estimated by the model II Symposium on PET. Krakow, 21-24 Sep 2014

- **Provides x,y and DOI**
- No calibration needed

Li, Z. et al. Nonlinear least-squares modeling of 3D interaction position in a monolithic scintillator block. Phys. Med. Biol., 55(21):6515,2010.

Least squares

$(\hat{x}, \hat{y}, \hat{z}, A_0, C_{\text{est}}) = \underset{(\hat{x}, \hat{y}, \hat{z}, A_0, C_{\text{est}})}{\arg\min} \sum_{i=1} (m_i - \text{photonNum}_i)^2.$ **Parameters** to estimate

Model

Gabriela Llosá

Position determination

• Simulated data.

Vniver§itat döValència

Position determination

- Detector in coincidence with a 1mm x 1mm x 10mm crystal coupled to a 1 mm² MPPC.
 - Na-22 source

- Simulations with GATE.
- Optical photons included
- Comparison of light distribution in the crystal.

A. Etxebeste et al. 2014 IEEE NSS MIC.

Positions simulated/measured

5.25

3.75

2.25

0.75

-0.75

-2.25

-3.75

-5.25

шш

5.25

3.75

2.25

0.75

0.75

-2.25

-3.75

-5.25

Ű.

Simulated data •

Real data •

5.25

3.75

2.25

0.75

-0.75

-2.25

-3.75

-5.25

2

10

13

time of

2

Position determination- Real data

5 mm thick crystal

5.25

3.75

2.25

0.75

-0.75

-2.25

-3.75

-5.25

шш

10 mm thick crystal

FWHM: 0.69±0.08 mm FWTM: 1.89±0.22 mm

FWHM: 0.73±0.11 mm FWTM: 2.0±0.1 mm

J. Cabello et al. NIMA 2013, 718, p 148-50.

Gabriela Llosá

Position determination - Real data

J. Cabello et al. NIMA 2013, 718, p 148-50.

Gabriela Llosá

Position determination: simulation results

• DOI determination, 5 mm thick crystal

Position determination: simulation results

• DOI determination, 10 mm thick crystal

Gabriela Llosá

II Symposium on PET. Krakow, 21-24 Sep 2014

5

Gabriela Llosá

Detectors tested in prototype

- Readout with two MAROC2 boards + NIM modules
- Data taken at 6 different positions from 0° to 150°
- Na-22 sources in different positions

Gabriela Llosá

Image reconstruction with ML-EM Adapted to continuous crystals.

tr

ansaxial	
	axial

	(x/y)
Transax FWHM (mm)	0.71/0.68
Transax FWTM (mm)	1.9/1.7
Ax FWHM (mm)	0.8/0.9
Ax FWTM (mm)	2.2/1.8

Gabriela Llosá

Gabriela Llosá

Vniver§itat īdöValència

- Custom made electronics board to replace NIM modules for coincidence.
- ✓ Use of a new DAQ system.
- Improvement of timing resolution.
- Improvement of detector alignment.

Second prototype

• New electronics needed for full ring

 _

	vl	v2	
 New photodetectors 	FBK SiPM 1.4 mm x 1.5 mm	AdvanSiD RGB-SiPM 1.45 mm x 1.45mm	
 New electronics 	MAROC2	VATA64HDR16	
 New Data Acquisiton System 	LabView program based on Windows USB output	MADDAQ+VMEDAQ based on Linux Ethernet output	

PETETE

PETETE

Second prototype

Gabriela Llosá

New DAQ system

- Custom-made DAQ system.
- Employing VATA64HDR16 ASIC from IDEAS.
- Modular and flexible design.
- Easily adaptable to different types of detectors.

- FPGA Xilinx.
- Fast data transfer: Ethernet (up to 1 Gbps)
- Time stamp with 1 ns resolution.
- Several boards can work in time coincidence.

V. Stankova et al. 2012 IEEE NSS Conf Record N14-107.

DAQ system

Gabriela Llosá

Second prototype **PRELIMINARY** !!

• 4 ns coincidence timing resolution

Reconstructed Point like source (0.5 mm radius)

FWHM around 1.0 ±0.1 mm. 9 iterations

Second prototype **PRELIMINARY !!**

• Two point sources with different activity

d=8.7mm FWHM =1.2mm

d=7.3mm FWHM =1.5mm

d=distance between reconstructed sources

Tests with FDG ongoing

New geometries

Prototype performance improvement

- Full ring simulations with GATE:
 - Study effect of DOI corrections.
 - Use of tapered crystals to minimize the gaps.

Continuous squared crystals with optical properties

Tapered crystals

VNIVERSITAT DÖVALÈNCIA

Prototype performance improvement

- Detector simulations with GEANT4 to estimate the performance with different configurations and geometries
 - Including transport of optical photons.
 - Square and tapered crystals.
 - Simulations compared to real data.

J. Barrio et al. 2012 IEEE MIC conf record

Gabriela Llosá

Performance improvement

Light distribution in the photodetector

35

Position determination

• Tapered close 5 mm • Tapered close 5 mm • Tapered open 5 mm • Tapered open 5 mm • Tapered open 5 mm • Tapered open 5 mm • • Tapered open 5 mm • • • Tapered open 5 mm • • • • • • • • • • • • • • • • • • •	B. Poly	F	Position determination						PRELIMINARY !!			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tapered clos			ose 5 mm	1	•	Tapere	d open 5	mm			
VNIVERSITAT A <th< th=""><th>CSIC UNITED ALL OF THE STREET</th><th></th><th></th><th></th><th>L2 mm</th><th></th><th></th><th></th><th></th><th>.2 mm</th><th></th></th<>	CSIC UNITED ALL OF THE STREET				L2 mm					.2 mm		
REAL SIMUL REAL SIMUL REAL SIMUL Si	Vniver§itat dğValència								▲ ▲ .			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			REA	۱L		S	IMUL	REAL		SI	MUL	
3 2 1 3 2 1 4 4 1 3 2 1				4			4	32	1	3	21	
3 2 1 3 2 1 4 4 point Real simulated 1 1.07 1.02 1 1.00 0.88 2 0.89 0.98 2 0.89 0.98 3 0.71 1.23 3 0.78 1.03 4 0.95 0.77 107 107 107 1.02 1 1.00 0.88 2 0.89 0.98 3 0.78 1.03 3 0.78 1.03 4 0.61 1.12			*				661.00		-			
point Real simulated 1 1.07 1.02 2 1.02 1.05 3 0.71 1.23 4 0.95 0.77		3	2	1		3	2 1	4			4	
point Real simulated 1 1.07 1.02 2 1.02 1 3 0.71 1.23 4 0.95 0.77					_				ē 13	and the second second		
1 1.07 1.02 2 1.02 1.05 3 0.71 1.23 4 0.95 0.77			рс	pint	Real	simulated		point	Real	simulated		
2 1.02 1.05 3 0.71 1.23 4 0.95 0.77				1	1.07	1.02		1	1.00	0.88		
3 0.71 1.23 3 0.78 1.03 4 0.95 0.77 4 0.61 1.12				2	1.02	1.05		2	0.89	0.98		
4 0.95 0.77 4 0.61 1.12				3	0.71	1.23		3	0.78	1.03		
Tabriela Liosa	Gabriela I	جُورا		4	0.95	0.77	on DET Knakov	4	0.61	1.12		

Gabriela Llosá

II Symposium on PE1. Krakow, == == ocp ====

Conclusions and future work

- A first prototype of a PET scanner with continuous LYSO crystals and SiPMs developed.
 - Position determination (including DOI) and image reconstruction algorithms adapted and working successfully.
 - Images of point-like sources reconstructed with FWHM better than 1 mm.
- Second prototype with improved performance recently assembled.
 - First tests ongoing. Needs optimization.
 - Imaging of Derenzo-like phantoms initiated.
- Development of a full ring underway.
- Alternative geometries are being tested.

Gabriela Llosá

Acknowledgment

- This work was supported in part by the European Commissions 7th Framework Programme through a Marie Curie European Reintegration Grant (ASPID GA num 239362).
- This work was supported in part through the Spanish Ministerio de Economia y Competitividad (FPA2010-14891, FIS2011-14585-E), Universitat de València (UV-INV-PRECOMP12-80755) and Generalitat Valenciana (GV/2013/133).
- Several group members are supported through the Juan de la Cierva (CSIC), JAE-DOC (CSIC - FSE) and Atracció de Talent (UV) programs.

Thank you! Questions?

Image reconstruction with SOPL

SOPL Simulated one-pass list mode.

Random Sampling in Measurement Space

SOPL: A Hybrid approach to system matrix calculation:

- MC sampling of PDF (Fast-simulation).
- On-the-fly calculation of matrix elements
- List-mode data

Vniver§itat döValència

- Uniformity with pixellated crystal array coupled to SiPM matrix one-to-one
- Na-22 photopeak positions within 5%.
- No corrections applied

Peak position

Image reconstruction with ML-EM/SOPL

SOPL adapted to continuous crystals:

- On-the-fly calculation of system matrix elements.
 - MC sampling of PDF.
- List-mode data.

J. Gillam et al. An Efficient Method of Reconstruction for AXPET Data: Simulated One–Pass List–Mode. 11th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 2011, p 310--313

Gabriela Llosá