Radiological Laboratory in Warsaw (1934)

Marian Danysz

 ${}^{4}\text{He} + {}^{14}\text{N} \rightarrow {}^{17}\text{F} + n$ ${}^{17}\text{F} \rightarrow {}^{18}\text{O} + e^{+} + v$

Formal leader of the Radiological Laboratory in Warsaw

A girl from Warsaw

"Radiograph" taken by Maria Curie by exposing a purse to radium.

http://www.galloim ages.co.za/

R.F. Mould, The British Journal of Radiology, 71, 1229 (1998)

Jagiellonian PET project

Il Symposium on Positron Emission Tomography Cracow, 21-24 September 2014

Pawel Moskal

Jagiellonian University, Cracow, Poland

for and on behalf of the J-PET collaboration

Supported by Polish National Center for Development and Research and Foundation for Polish Science

IMAGE

Experimental Group of Advanced Medical Imaging PET and polarized-MRI

Jagiellonian PET (J-PET) Jagiellonian University, National Center of Nuclear Reserach

IMAGE

Experimental Group of Advanced Medical Imaging PET and polarized-MRI

• Jagiellonian PET (J-PET)

Jagiellonian University, National Center of Nuclear Reserach

Novel detector systems for the Positron Emission Tomography aiming at the simultaneous, whole body imaging http://koza.if.uj.edu.pl

- Currently all PET are based on crystals PHILIPS \rightarrow LYSO SIMENS \rightarrow LSO
- GE Healthcare \rightarrow BGO

Type:LSO / LYSO / BGO / polymer scintillatorPrice per cm³:86 / 86 / 35 / 1

Polymer scintillators can be easily produced in large sizes and various shapes

PHILIPS \rightarrow LYSO SIMENS \rightarrow LSO GE Healthcare \rightarrow BGO

Why polymers were not considered so far as a material for PET detectors ?

for the 2.5 cm layer the efficiency for the registration of events selected to reconstruct the image is for the plastic scintillator by a factor of about 20 smaller in relation to the BGO crystals and about 40 times less compared to the LSO crystals

name	type	density [g/cm ³]	decay time [ns]	photons/ MeV	mean free path [cm]
BGO	crystal	7.13	300	6000	1.04
GSO	crystal	6.71	50	10000	1.49
LSO	crystal	7.40	40	29000	1.15
NE102A	polymer	1.032	2.4	10000	10.2
BC404	polymer	1.032	1.8	10000	10.2
RP422	polymer	1.032	1.6	10000	10.2

Polymers: low detection efficiency and no photelectric effect, BUT.

LIGHT SIGNALS FROM POLYMERS ARE MUCH "FASTER" !!!

name	type	density [g/cm ³]	decay time [ns]	photons/ MeV	mean free path [cm]
BGO	crystal	7.13	300	6000	1.04
GSO	crystal	6.71	50	10000	1.49
LSO	crystal	7.40	40	29000	1.15
NE102A	polymer	1.032	2.4	10000	10.2
BC404	polymer	1.032	1.8	10000	10.2
RP422	polymer	1.032	1.6	10000	10.2

J-PET (Jagiellonian PET)

$$\Delta I = (t_2 - t_1) v / 2$$

 $\Delta x = (t_l - t_r) c / 2$

 $FWHM(\Delta I) \approx FWHM(\Delta t) * c/4$ $FWHM(\Delta x) \approx FWHM(\Delta t) * c / 2\sqrt{2}$

Lets take advantage of TIME resolution not only for TOF but also for the determination of hit positions

Thus for example: FWHM(Δt) = 100ps \rightarrow FWHM(Δl) = 0.7cm \rightarrow FWHM(Δx) = 1 cm

J-PET (Jagiellonian PET)

$$\Delta I = (t_2 - t_1) v / 2$$

 $\begin{aligned} \mathsf{FWHM}(\Delta \mathsf{I}) &\approx \mathsf{FWHM}(\Delta \mathsf{t}) * \mathsf{c}/4 \\ \mathsf{FWHM}(\Delta \mathsf{x}) &\approx \mathsf{FWHM}(\Delta \mathsf{t}) * \mathsf{c}/2\sqrt{2} \end{aligned}$

Thus for example: FWHM(Δt) = 100ps \rightarrow FWHM(Δl) = 0.7cm \rightarrow FWHM(Δx) = 1 cm

It is important to note that the cost of J-PET does not increase with the increas of the FOV

epsilon^2 = 20 to 40 smaller efficiency But

- 2D --> 3D -----> factor of ~5
- 600ps --> 100ps 200ps --> factor of 6 -- 3
- 1m instead of 20cm -----> factor of 9
- N layers in the strip-PET --> factor N²

For N=1 --- -> total factor of ~ 200

- Lower dose by factor of 7
- Accidental coincidences less by factor of about 1000

 $(epsilon * 7)^2$

J-PET: Nucl. Instr. & Meth. A764 (2014) 317 J-PET: Nucl. Instr. & Meth. A764 (2014) 186

First challange is to develope FFE electronics with sampling precision better than 50 ps

KB7 + TRBv3 together

Si-Ge and As-Ge

sigma(t) = 25 ps

Time difference between two strips after cut on TOT

New idea... BREAK THROUGH

FFE sampling & Readout electronics **PCT/EP2014/068367** precision of 21ps (sigma) for 10 Euro per sample

simultaneous PET-CT scan: PCT/EP2014/068363 and

simultaneous PET-MRI scan: pct/EP2014/068373

INSTYTUT FOTONOWY COMPANY

ELECTRONICS

P. Salabura, T. Kozik, M. Pałka, P. Strzempek

Nowoczesna Elektronika COMPANY

DAQ TRIGGERLESS G. Korcyl, M. Kajetanowicz

SIMULATIONS

P. Kowalski, W. Wiślicki (Świerk Computing Centre) D. Kamińska, O. Rundel

SYNTHESIS OF SCINTILLATORS

Ł. Kapłon,
A. Wieczorek,
A. Kochanowski,
M. Molenda,

A. Danel (AU)

EXPERIMENTS, CALIBRATIONS

D. Alfs, T. Bednarski, E. Czerwinski, J. Smyrski, E. Kubicz, Sz. Niedźwiecki, M. Silarski, M. Zieliński

IMAGE VISUALISATION SILVERMEDIA IT COMPANY Analysis framework W.Krzemień, T. Gruntowski, A.Gruntowski

TIME and HIT-POSITION RECONSRUCTION ... Raczyński, N. Sharma, N.Zoń

IMAGE RECONSTRUCTION P. Białas, J. Kowal, Z. Rudy, A. Słomski, A. Strzelecki

